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Introduction



Introduction

I In classification, the goal is to find a mapping from inputs X to outputs t ∈ {1, 2, . . . ,C}
given a labeled set of input-output pairs.

I We can extend the binary classifiers to C class classification problems or use multiple

binary classifiers.

I For C -class, we have four extensions for using binary classifiers.

Single C−class discriminant

One-against-all

One-against-one

Hierarchical classification

Error correcting coding
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C−class discriminant function



C−class discriminant function

I We can consider a single C−class discriminant comprising C linear functions of the form

gk(x) = wT
k x + wk0

I Then assigning a point x to class Ck if gk(x) > gj(x) for all j 6= k.

I The decision boundary between class Ck and class Cj is given by gk(x) = gj(x) and

corresponds to hyperplane

(wk − wj)
T x + (wk0 − wj0) = 0

I This has the same form as decision boundary for the two-class case.

184 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.3 Illustration of the decision regions for a mul-
ticlass linear discriminant, with the decision
boundaries shown in red. If two points xA

and xB both lie inside the same decision re-
gion Rk, then any point bx that lies on the line
connecting these two points must also lie in
Rk, and hence the decision region must be
singly connected and convex.
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where 0 ! λ ! 1. From the linearity of the discriminant functions, it follows that

yk(x̂) = λyk(xA) + (1 − λ)yk(xB). (4.12)

Because both xA and xB lie inside Rk, it follows that yk(xA) > yj(xA), and
yk(xB) > yj(xB), for all j ̸= k, and hence yk(x̂) > yj(x̂), and so x̂ also lies
inside Rk. Thus Rk is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here,
based on two discriminant functions y1(x) and y2(x), or else use the simpler but
equivalent formulation described in Section 4.1.1 based on a single discriminant
function y(x).

We now explore three approaches to learning the parameters of linear discrimi-
nant functions, based on least squares, Fisher’s linear discriminant, and the percep-
tron algorithm.

4.1.3 Least squares for classification
In Chapter 3, we considered models that were linear functions of the parame-

ters, and we saw that the minimization of a sum-of-squares error function led to a
simple closed-form solution for the parameter values. It is therefore tempting to see
if we can apply the same formalism to classification problems. Consider a general
classification problem with K classes, with a 1-of-K binary coding scheme for the
target vector t. One justification for using least squares in such a context is that it
approximates the conditional expectation E[t|x] of the target values given the input
vector. For the binary coding scheme, this conditional expectation is given by the
vector of posterior class probabilities. Unfortunately, however, these probabilities
are typically approximated rather poorly, indeed the approximations can have values
outside the range (0, 1), due to the limited flexibility of a linear model as we shall
see shortly.

Each class Ck is described by its own linear model so that

yk(x) = wT
k x + wk0 (4.13)

where k = 1, . . . , K. We can conveniently group these together using vector nota-
tion so that

y(x) = W̃Tx̃ (4.14)
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One-against-all classification

I This extension is to consider a set of C two-class problems.

I For each class, we seek to design an optimal discriminant function, gi (x) (for

i = 1, 2, . . . ,C ) so that gi (x) > gj(x), ∀j 6= i , if x ∈ Ci .

I Adopting the SVM methodology, we can design the discriminant functions so that

gi (x) = 0 to be the optimal hyperplane separating class Ci from all the others. Thus, each

classifier is designed to give gi (x) > 0 for x ∈ Ci and gi (x) < 0 otherwise.

I Classification is then achieved according to the following rule:

Assign x to class Ci if i = argmax
k

gk(x)
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Properties of one-against-all classification

I The number of classifiers equals to C .

I Each binary classifier deals with a rather asymmetric problem in the sense that training is

carried out with many more negative than positive examples. This becomes more serious

when the number of classes is relatively large.

I This technique, however,may lead to indeterminate regions, where more than one gi (x) is

positive
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Properties of one-against-all classification

I The implementation of OVA is easy.

I It is not robust to errors of classifiers. If a classifier make a mistake, it is possible that the

entire prediction is errorneous.

Theorem (OVA error bound)

Suppose the average binary error of C binary classifiers is ε. Then the error rate of the OVA

multi–class classifier is at most (C − 1)ε.

I Please prove the above theorem.
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One-against-one classification

I In this case,C (C − 1)/2 binary classifiers are trained and each classifier separates a pair of

classes.

I The decision is made on the basis of a majority vote.

I The obvious disadvantage of the technique is that a relatively large number of binary

classifiers has to be trained.
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One-against-one classification

I This technique, however,may lead to indeterminate regions, where more than one gij(x) is

positive

Theorem (AVA error bound)

Suppose the average binary error of the C (C − 1)/2 binary classifiers is at most ε. Then the

error rate of the AVA multi–class classifier is at most 2(C − 1)ε.

I Please prove the above theorem.

I The bound for AVA is 2(C − 1)ε and the bound for OVA is (C − 1)ε. Does this mean that

OVA is neccessarily better than AVA? Why or why not? Please do it as a homework.
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Hierarchical classification

I In hierarchical classification, the output space is hierarchically divided i.e. the classes are

arranged into a tree.

{C1,C2,C3,C4} vs {C5,C6,C7,C8}

{C1,C2} vs {C3,C4}

C1 vs C2

C1 C2

C3 vs C4

C3 C4

{C5,C6} vs {C7,C8}

C5 vs C6

C5 C6

C7 vs C8

C7 C8
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Hierarchical classification

I One thing to keep in mind with hierarchical classifiers is that you have control over how

the tree is defined.

I In OVA and AVA you have no control in the way that classification problems are created.

I In hierarchical classifiers, the only thing that matters is that, at the root, half of the

classes are considered positive and half are considered negative.

I You want to split the classes in such a way that this classification decision is as easy as

possible.

Theorem (Hierarchical classification error bound)

Suppose the average binary classifiers error is ε. Then the error rate of the hierarchical

classifier is at most dlog2 Ceε .

I Can you do better than dlog2 Ceε? Yes. Using error-correcting codes.
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Error correcting coding classification

I In this approach, the classification task is treated in the context of error correcting coding.

I For a C−class problem a number of, say, L binary classifiers are used,where L is

appropriately chosen by the designer.

I Each class is now represented by a binary code word of length L.

I During training of i th classifier, the desired labels are chosen from {−1,+1}.
I For each class, the desired labels may be different for the various classifiers.

I This is equivalent to constructing a matrix C × L of desired labels. For example, if C = 4

and L = 6, such a matrix can be
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Error correcting coding classification (cont.)

I For example, if C = 4 and L = 6, such a matrix can be

I During training, the first classifier (corresponding to the first column of the previous

matrix) is designed in order to respond (−1,+1,+1,−1) for examples of classes

C1,C2,C3,C4, respectively.

I The second classifier will be trained to respond (−1,−1,+1,−1), and so on.

I The procedure is equivalent to grouping the classes into L different pairs, and, for each

pair, we train a binary classifier accordingly.

I Each row must be distinct and corresponds to a class.
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Error correcting coding classification (cont.)

I When an unknown pattern is presented, the output of each one of the binary classifiers is

recorded, resulting in a code word.

I Then,the Hamming distance of this code word is measured against the C code words, and

the pattern is classified to the class corresponding to the smallest distance.

I This feature is the power of this technique. If the code words are designed so that the

minimum Hamming distance between any pair of them is, say, d , then a correct decision

will still be reached even if the decisions of at most b d−1
2 c out of the L, classifiers are

wrong.

Theorem (Error-correcting error bound)

Suppose the average binary classifiers error is ε. Then the error rate of the classifier created

using error correcting codes is at most 2ε .

I You can prove a lower bound that states that the best you could possible do is ε
2 .
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Readings

1. An imbalanced data set is one in which there are too many positive examples and too few

negative examples (or vice versa).

2. Examples of imbalanced data set are

I Fraud detection
I Intrusion detection
I Spam detection

3. If we have a good binary classification algorithm, can we use it for imbalanced dataset?

4. To use such a classifier, we use the following transformations of dataset.

I Sub-sampling
I Oversampling
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Reading



Readings

1. Section 4.1.2 of Pattern Recognition and Machine Learning Book (Bishop 2006).
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Questions?

cba
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