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Introduction



Introduction

I Clustering is the process of grouping a set of data objects into multiple groups or clusters

so that objects within a cluster have high similarity, but are very dissimilar to objects in

other clusters.

I Dissimilarities and similarities are assessed based on the feature values describing the

objects and often involve distance measures.

I Clustering is usually an unsupervised learning problem.

I Consider a dataset X = {x1, . . . , xN} ,xi ∈ RD .

I Assume there are K clusters C1, . . . ,CK .

I The goal is to group the examples into K homogeneous partitions.

Clustering

Usually an unsupervised learning problem

Given: N unlabeled examples {x1, . . . , xN}; no. of desired partitions K

Goal: Group the examples into K “homogeneous” partitions

Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)

Loosely speaking, it is classification without ground truth labels

A good clustering is one that achieves:

High within-cluster similarity

Low inter-cluster similarity

Machine Learning (CS771A) Clustering: K -means and Kernel K -means 2
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Introduction

I A good clustering is one that achieves:

I High within-cluster similarity
I Low inter-cluster similarity

I Applications of clustering

I Document/Image/Webpage Clustering
I Image Segmentation
I Clustering web-search results
I Clustering (people) nodes in (social) networks/graphs
I Pre-processing phase
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Comparing clustering methods

I The clustering methods can be compared using the following aspects:

I The partitioning criteria : In some methods, all the objects are partitioned so that no

hierarchy exists among the clusters.
I Separation of clusters : In some methods, data partitioned into mutually exclusive clusters

while in some other methods, the clusters may not be exclusive, that is, a data object may

belong to more than one cluster.
I Similarity measure : Some methods determine the similarity between two objects by the

distance between them; while in other methods, the similarity may be defined by

connectivity based on density or contiguity.
I Clustering space : Many clustering methods search for clusters within the entire data space.

These methods are useful for low-dimensionality data sets. With high- dimensional data,

however, there can be many irrelevant attributes, which can make similarity measurements

unreliable. Consequently, clusters found in the full space are often meaningless. It’s often

better to instead search for clusters within different subspaces of the same data set.
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Types of Clustering

Flat or Partitional clustering (Partitions are

independent of each other)

Types of Clustering

1 Flat or Partitional clustering

Partitions are independent of each other

2 Hierarchical clustering

Partitions can be visualized using a tree structure (a dendrogram)

Possible to view partitions at di↵erent levels of granularities (i.e., can
refine/coarsen clusters) using di↵erent K
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Possible to view partitions at different levels of

granularities (i.e., can refine/coarsen clusters)

using different K .
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Flat Clustering: K-means algorithm (Lloyd, 1957)

I Associate a prototype µk , k = 1, . . . ,K with each cluster.

I Let rnk be the indicator of xn ∈ Ck .

I The goal is to minimize

J =
N∑

n=1

K∑

k=1

rnk‖xn − µk‖2

I Goal is to find {rnk} and {µk}.
I Optimization is performed by alternating minimization

I Optimize over {rnk} for a fixed {µk}.
I Optimize over {µk} for a fixed {rnk}.

I Initialize with arbitrary choices of {µk}
I Iterative updates continue till convergence

I Guaranteed to converge, as objective is monotonic decreasing
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Flat Clustering: K-means algorithm (Lloyd, 1957)

I Input: N examples {x1, . . . , xN}; xn ∈ RD ; the number of partitions K

I Initialize: K cluster means µ1, . . . , µK , each µk ∈ RD .

Usually initialized randomly, but good initialization is crucial; many smarter initialization

heuristics exist (e.g., K-means++, Arthur & Vassilvitskii, 2007)

I Repeat:

I (Re)-Assign each example xn to its closest cluster center (based on the smallest Euclidean

distance)

rnk =

 1 if k = argmin
j
‖xn − µj‖2

0 otherwise.

Let Ck is the set of examples assigned to cluster k with center µk .
I Update the cluster means

µk =
1

|Ck |
∑
xn∈Ck

xn =

∑N
n=1 rnkxn∑N
n=1 rnk

I Stop: when cluster means or the “loss” (defined later) doesn’t change by much
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Kmeans Example

Finding the optimal zn

I Note that given the µk, we can optimize all the zn

independently, because the objective is just the sum over
n.

I But the squared error will be smallest if we set znk = 1
for whichever µk is closest.

I Formally, to optimize all zn, given the set of µk, set:

znk =

(
1 if k = arg minj kxn � µjk2

0 otherwise.

Roland Memisevic Machine Learning 13

Finding the optimal µk

I Given the zn, the objective function J is a quadratic
function of µk which we can optimize by setting the
derivative to zero:

2
NX

n=1

znk(xn � µk) = 0

I Solving for µk yields:

µk =

P
n znkxnP

n znk

I This solution has a simple interpretation: Set each µk to
the mean of all points currently assigned to cluster k !

Roland Memisevic Machine Learning 14

Iterating inference and parameter adaptation

I Learning amounts to iterating inference of the zn, and
adapting the parameters µk until there are no more
changes.

I This training procedure always converges: J is positive,
and every step either decreases it or leaves it unchanged.

I But note that there can be local minima.

I One way to deal with them is to try multiple runs with
di↵erent initializations for the parameters µk and to pick
the solution with the lowest final cost.

Roland Memisevic Machine Learning 15

K-means example

I Learning a model with 2 cluster centers.

Roland Memisevic Machine Learning 16
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Kmeans Example336 Representative-based Clustering

2 3 4 10 11 12 20 25 30

(a) Initial dataset
µ1 = 2

2 3

µ2 = 4

4 10 11 12 20 25 30

(b) Iteration: t = 1
µ1 = 2.5

2 3 4

µ2 = 16

10 11 12 20 25 30

(c) Iteration: t = 2
µ1 = 3

2 3 4 10

µ2 = 18

11 12 20 25 30

(d) Iteration: t = 3
µ1 = 4.75

2 3 4 10 11 12

µ2 = 19.60

20 25 30

(e) Iteration: t = 4
µ1 = 7

2 3 4 10 11 12

µ2 = 25

20 25 30

(f) Iteration: t = 5 (converged)

Figure 13.1. K-means in one dimension.

Example 13.2 (K-means in Two Dimensions). In Figure 13.2 we illustrate the
K-means algorithm on the Iris dataset, using the first two principal components as
the two dimensions. Iris has n = 150 points, and we want to find k = 3 clusters,
corresponding to the three types of Irises. A random initialization of the cluster
means yields

µ1 = (−0.98,−1.24)T µ2 = (−2.96,1.16)T µ3 = (−1.69,−0.80)T

as shown in Figure 13.2a. With these initial clusters, K-means takes eight iterations
to converge. Figure 13.2b shows the clusters and their means after one iteration:

µ1 = (1.56,−0.08)T µ2 = (−2.86,0.53)T µ3 = (−1.50,−0.05)T

Finally, Figure 13.2c shows the clusters on convergence. The final means are as
follows:

µ1 = (2.64,0.19)T µ2 = (−2.35,0.27)T µ3 = (−0.66,−0.33)T
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Kmeans Example

The value of J as learning progresses

Roland Memisevic Machine Learning 17

Inference for test-data

I Given a trained model, we can infer the cluster-centers for
new test-data points x not seen during training: Pick the
nearest µk like we did during training:

zk =

(
1 if k = arg minj kxn � µjk2

0 otherwise.

I Since z represents the high-dimensional vector x using
only one of K integers, K-means is a way to perform
lossy compression.

I The set of all K prototypes µk is sometimes called
codebook.

I Clustering and K-means are also known as vector
quantization.

Roland Memisevic Machine Learning 18

A simple application
I Replace the RGB-value (a 3-D vector) at each pixel with

one of K prototypes:

Roland Memisevic Machine Learning 19

Gaussian mixture models

I K-means is closely related to a probabilistic model known
as the

Mixture of Gaussians

p(x) =
X

k

⇡kN (x|µk,⌃k)

I ⇡k, µk,⌃k are parameters. ⇡k are called mixing
proportions, each Gaussian is called a mixture component.

I The model is simply a weighted sum of Gaussians. But it
is much more powerful than a single Gaussian, because it
can model multi-modal distributions:

Roland Memisevic Machine Learning 20
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Decrease in objective function

Decrease in objective function

J

1 2 3 4
0

500

1000

Instructor: Arindam Banerjee Kmeans and EM
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K-means objective function

I Consider the K-means objective function

J(X , µ, r) =
N∑

n=1

K∑

k=1

rnk‖xn − µk‖2

I It is a non-convex objective function, so may have many local minima.

I Also NP-hard to minimize in general (note that r is discrete)

I The K-means algorithm is a heuristic to optimize this function

I K-means algorithm alternated between the following two steps

I assign points to closest centers
I recompute the center means

I The algorithm usually converges to a local minima. Multiple runs with different

initializations are usually tried to find a good solution.
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K-means (choosing K)

I Try different values of K , plot the K-means objective versus K .

K -means: Choosing K

One way to select K for the K -means algorithm is to try di↵erent values of
K , plot the K -means objective versus K , and look at the “elbow-point”

For the above plot, K = 6 is the elbow point

Can also information criterion such as AIC (Akaike Information Criterion) or
BIC (Bayesian Informaton Criterion)

AIC = 2L(µ̂, X, Ẑ) + 2KD

BIC = 2L(µ̂, X, Ẑ) + KD log N

.. and choose K that gives smallest AIC/BIC (both penalize large K values)

Machine Learning (CS771A) Clustering: K -means and Kernel K -means 19

I We can also use information criterion such as AIC (Akaike Information Criterion) or BIC

(Bayesian Information Criterion) and choose K that gives smallest AIC/BIC (both penalize

large K values)
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K-means (limitations)

I Makes hard assignments of points to clusters

I A point either completely belongs to a cluster or doesn’t belong at all
I No notion of a soft assignment.

I Works well only is the clusters are roughly of equal sizes.

I Probabilistic clustering methods such as Gaussian mixture models can handle both these

issues

I K-means also works well only when the clusters are round-shaped and does badly if the

clusters have non-convex shapes

K -means: Some Limitations

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or doesn’t belong at all

No notion of a soft assignment (i.e., probability of being assigned to each
cluster: say K = 3 and for some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Works well only is the clusters are roughtly of equal sizes

Probabilistic clustering methods such as Gaussian mixture models can handle
both these issues (model each cluster using a Gaussian distribution)

K -means also works well only when the clusters are round-shaped and does
badly if the clusters have non-convex shapes

Kernel K -means or Spectral clustering can handle non-convex

Machine Learning (CS771A) Clustering: K -means and Kernel K -means 20

I Kernel K-means or Spectral clustering can handle non-convex
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Kernel K-means

I The idea is to replace the Euclidean distance/similarity computations in K-means by the

kernelized versions

d2(xn, µk) = ‖φ(xn)− φ(µk)‖2

= K (xn, xn) + K (µk , µk)− 2K (µk , xn)

Kernel K -means

Basic idea: Replace the Euclidean distance/similarity computations in
K -means by the kernelized versions. E.g., d(xn, µk) = ||�(xn) � �(µk)||

||�(xn) � �(µk )||2 = �(xn)
>
�(xn) + �(µk )

>
�(µk ) � 2�(µk )

>
�(xn)

= k(xn, xn) + k(µk , µk ) � 2k(µk , xn)

Here k(., .) denotes the kernel function and � is its (implicit) feature map

Note: � doesn’t have to be computed/stored for data {xn}N
n=1 or the cluster

means {µk}K
k=1 because computations only depend on kernel evaluations

Note: Computing k(xn, xn) above is straightforward. Computing the kernel
functions above involving µk ’s requires some simple algebra (see next slide)

Machine Learning (CS771A) Clustering: K -means and Kernel K -means 21
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Kernel K-means

I Computing K (xn, xn) is easy: Simply compute this kernel function.

I Compute K (µk , µk) as follows (assume Nk is the no. of points in cluster k)

K (µk , µk) = φT (µk)φ(µk) =

[
1

Nk

Nk∑

n=1

φ(xn)

]T [
1

Nk

Nk∑

n=1

φ(xn)

]

=
1

N2
k

Nk∑

n=1

Nk∑

m=1

φT (xn)φ(xm)

=
1

N2
k

Nk∑

n=1

Nk∑

m=1

K (xn, xm)

I K (µk , xn) can be computed as

K (µk , xn) = φT (µk)φ(xn) =

[
1

Nk

Nk∑

n=1

φ(xn)

]T
φ(xn)

=
1

Nk

Nk∑

m=1

Nk∑

m=1

φT (xn)φ(xm) =
1

Nk

Nk∑

m=1

K (xn, xm)
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Hierarchical Clustering

I A hierarchical clustering method works by grouping data objects into a hierarchy or “tree”

of clusters.

HAN 17-ch10-443-496-9780123814791 2011/6/1 3:44 Page 460 #18
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Figure 10.6 Agglomerative and divisive hierarchical clustering on data objects {a,b,c,d,e}.
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Figure 10.7 Dendrogram representation for hierarchical clustering of data objects {a,b,c,d,e}.

different clusters. This is a single-linkage approach in that each cluster is represented
by all the objects in the cluster, and the similarity between two clusters is measured
by the similarity of the closest pair of data points belonging to different clusters. The
cluster-merging process repeats until all the objects are eventually merged to form one
cluster.

DIANA, the divisive method, proceeds in the contrasting way. All the objects are used
to form one initial cluster. The cluster is split according to some principle such as the
maximum Euclidean distance between the closest neighboring objects in the cluster. The
cluster-splitting process repeats until, eventually, each new cluster contains only a single
object.

A tree structure called a dendrogram is commonly used to represent the process of
hierarchical clustering. It shows how objects are grouped together (in an agglomerative
method) or partitioned (in a divisive method) step-by-step. Figure 10.7 shows a den-
drogram for the five objects presented in Figure 10.6, where l = 0 shows the five objects
as singleton clusters at level 0. At l = 1, objects a and b are grouped together to form the

I Hierarchical clustering methods

I Agglomerative hierarchical clustering
I Divisive hierarchical clustering

17/35



Distance measures (linkage measures) in hierarchical methods

I How measure the distance between two clusters, where each cluster is generally a set.

I Four widely used measures for distance between clusters are as follows

I Minimum distance

dmin(Ci ,Cj) = minp∈Ci ,q∈Cj {|p − q|}
I Maximum distance

dmax(Ci ,Cj) = maxp∈Ci ,q∈Cj {|p − q|}
I Mean distance

dmean(Ci ,Cj) = |µi − µj |
I Average distance

dmin(Ci ,Cj) =
1

NiNj

∑
p∈Ci ,q∈Cj

|p − q|

(Dis)similarity between clusters

We know how to compute the dissimilarity d(x i , x j) between two examples

How to compute the dissimilarity between two clusters R and S?

Min-link or single-link: results in chaining (clusters can get very large)

d(R, S) = min
xR2R,xS2S

d(xR , xS )

Max-link or complete-link: results in small, round shaped clusters

d(R, S) = max
xR2R,xS2S

d(xR , xS )

Average-link: compromise between single and complexte linkage

d(R, S) =
1

|R||S|
X

xR2R,xS2S

d(xR , xS )

Machine Learning (CS771A) Clustering: K -means and Kernel K -means 25
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Hierarchical methods
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different clusters. This is a single-linkage approach in that each cluster is represented
by all the objects in the cluster, and the similarity between two clusters is measured
by the similarity of the closest pair of data points belonging to different clusters. The
cluster-merging process repeats until all the objects are eventually merged to form one
cluster.

DIANA, the divisive method, proceeds in the contrasting way. All the objects are used
to form one initial cluster. The cluster is split according to some principle such as the
maximum Euclidean distance between the closest neighboring objects in the cluster. The
cluster-splitting process repeats until, eventually, each new cluster contains only a single
object.

A tree structure called a dendrogram is commonly used to represent the process of
hierarchical clustering. It shows how objects are grouped together (in an agglomerative
method) or partitioned (in a divisive method) step-by-step. Figure 10.7 shows a den-
drogram for the five objects presented in Figure 10.6, where l = 0 shows the five objects
as singleton clusters at level 0. At l = 1, objects a and b are grouped together to form the
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Model-based clustering

I K -means is closely related to a probabilistic model known as the Gaussian mixture model.

p(x) =
K∑

k=1

πkN (x |µk ,Σk)

I πk , µk ,Σk are parameters. πk are called mixing proportions and each Gaussian is called a

mixture component.

I The model is simply a weighted sum of Gaussian. But it is much more powerful than a

single Gaussian, because it can model multi-modal distributions.
Gaussian mixture models example

I A mixture of three Gaussians.

Roland Memisevic Machine Learning 21

Gaussian mixture models example

A Gaussian fit to some data. Gaussian mixture fit to same data.
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Gaussian mixture models

p(x) =
X

k

⇡kN (x|µk,⌃k)

I Note that for p(x) to be a probability distribution, we
require that

P
k ⇡k = 1 and that ⇡k > 0 8k

I Thus, we may interpret the ⇡k as probabilities themselves!

I This motivates introducing latent variables z and
re-writing the model, equivalently, in terms of two
distributions p(z) and p(z|x) as follows:

p(x) =
X

z

p(z)p(x|z)

Roland Memisevic Machine Learning 23

Gaussian mixture models

I Here

p(z) =
KY

k=1

⇡zk
k

is a discrete distribution (that is, z is a one-hot encoding
like in K-means.)

I And
p(x|zk = 1) = N (x|µk,⌃k)

is a conditional Gaussian distribution.

I Why rewrite the mixture model like this?

Roland Memisevic Machine Learning 24

I Note that for p(x) to be a probability distribution, we require that
∑

k πk = 1 and that for

all k we have πk > 0. Thus, we may interpret the πk as probabilities themselves.

I Set of parameters θ = {{πk}, {µk}, {Σk}}
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Model-based clustering (cont.)

I Let use a K-dimensional binary random variable z in which a particular element zk equals

to 1 and other elements are 0.

I The values of zk therefore satisfy zk ∈ {0, 1} and
∑

k zk = 1

I We define the joint distribution p(x , z) in terms of a marginal distribution p(z) and a

conditional distribution p(x |z).

I The marginal distribution over z is specified in terms of πk , such that

p(zk = 1) = πk

I We can write this distribution in the form of

p(zk = 1) =
K∏

k=1

πzk
k

I The conditional distribution of x given a particular value for z is a Gaussian

p(x |zk = 1) = N (x |µk ,Σk)

I This can also be written in the form of

p(x |zk = 1) =
K∏

k=1

N (x |µk ,Σk)zk
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Model-based clustering (cont.)

I The marginal distribution of x equals to

p(x) =
∑

z

p(z)p(x |z) =
K∑

k=1

πkN (x |µk ,Σk)

I We can write p(zk = 1|x) as

γ(zk) = p(zk = 1|x) =
p(zk = 1)p(x |zk = 1)

p(x)

=
p(zk = 1)p(x |zk = 1)

∑K
j=1 p(zj = 1)p(x |zj = 1)

=
πkN (x |µk ,Σk)

∑K
j=1 πjN (x |µj ,Σj)

I We shall view πk as the prior probability of zk = 1, and the quantity γ(zk) as the

corresponding posterior probability once we have observed x .
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Gaussian mixture model (example)

112 2. PROBABILITY DISTRIBUTIONS
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Figure 2.23 Illustration of a mixture of 3 Gaussians in a two-dimensional space. (a) Contours of constant
density for each of the mixture components, in which the 3 components are denoted red, blue and green, and
the values of the mixing coefficients are shown below each component. (b) Contours of the marginal probability
density p(x) of the mixture distribution. (c) A surface plot of the distribution p(x).

We therefore see that the mixing coefficients satisfy the requirements to be probabil-
ities.

From the sum and product rules, the marginal density is given by

p(x) =

K∑

k=1

p(k)p(x|k) (2.191)

which is equivalent to (2.188) in which we can view πk = p(k) as the prior prob-
ability of picking the kth component, and the density N (x|µk,Σk) = p(x|k) as
the probability of x conditioned on k. As we shall see in later chapters, an impor-
tant role is played by the posterior probabilities p(k|x), which are also known as
responsibilities. From Bayes’ theorem these are given by

γk(x) ≡ p(k|x)

=
p(k)p(x|k)∑

l p(l)p(x|l)

=
πkN (x|µk,Σk)∑

l πlN (x|µl,Σl)
. (2.192)

We shall discuss the probabilistic interpretation of the mixture distribution in greater
detail in Chapter 9.

The form of the Gaussian mixture distribution is governed by the parameters π,
µ and Σ, where we have used the notation π ≡ {π1, . . . , πK}, µ ≡ {µ1, . . . ,µK}
and Σ ≡ {Σ1, . . .ΣK}. One way to set the values of these parameters is to use
maximum likelihood. From (2.188) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =

N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
(2.193)
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Figure 9.5 Example of 500 points drawn from the mixture of 3 Gaussians shown in Figure 2.23. (a) Samples
from the joint distribution p(z)p(x|z) in which the three states of z, corresponding to the three components of the
mixture, are depicted in red, green, and blue, and (b) the corresponding samples from the marginal distribution
p(x), which is obtained by simply ignoring the values of z and just plotting the x values. The data set in (a) is
said to be complete, whereas that in (b) is incomplete. (c) The same samples in which the colours represent the
value of the responsibilities γ(znk) associated with data point xn, obtained by plotting the corresponding point
using proportions of red, blue, and green ink given by γ(znk) for k = 1, 2, 3, respectively

matrix X in which the nth row is given by xT
n . Similarly, the corresponding latent

variables will be denoted by an N × K matrix Z with rows zT
n . If we assume that

the data points are drawn independently from the distribution, then we can express
the Gaussian mixture model for this i.i.d. data set using the graphical representation
shown in Figure 9.6. From (9.7) the log of the likelihood function is given by

ln p(X|π, µ,Σ) =

N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
. (9.14)

Before discussing how to maximize this function, it is worth emphasizing that
there is a significant problem associated with the maximum likelihood framework
applied to Gaussian mixture models, due to the presence of singularities. For sim-
plicity, consider a Gaussian mixture whose components have covariance matrices
given by Σk = σ2

kI, where I is the unit matrix, although the conclusions will hold
for general covariance matrices. Suppose that one of the components of the mixture
model, let us say the jth component, has its mean µj exactly equal to one of the data

Figure 9.6 Graphical representation of a Gaussian mixture model
for a set of N i.i.d. data points {xn}, with corresponding
latent points {zn}, where n = 1, . . . , N .

xn

zn

N

µ Σ

π
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Model-based clustering (cont.)

I Let X = {x1, . . . , xN} be drawn i.i.d. from mixture of Gaussian. The log-likelihood of the

observations equals to

ln p(x |µ, π,Σ) =
N∑

n=1

ln

[
K∑

k=1

πkN (xn|µk ,Σk)

]

I Finding the derivatives of ln p(x |µ, π,Σ) with respect to µk and setting it equal to zero,

we obtain

0 = −
N∑

n=1

πkN (xn|µk ,Σk)
∑K

j=1 πjN (xn|µj ,Σj)︸ ︷︷ ︸
γ(znk )

Σk(xn − µk)

I Multiplying by Σ−1k and then simplifying, we obtain

µk =
1

Nk

N∑

n=1

γ(znk)xn

Nk =
N∑

n=1

γ(znk)
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Model-based clustering (cont.)

I Finding the derivatives of ln p(x |µ, π,Σ) with respect to Σk and setting it equal to zero,

we obtain

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T

I We maximize ln p(x |µ, π,Σ) with respect to πk with constraint
∑K

k=1 πk = 1. This can be

achieved using a Lagrange multiplier and maximizing the following quantity

ln p(x |µ, π,Σ) + λ

(
K∑

k=1

πk − 1

)
.

which gives
N∑

n=1

πkN (xn|µk ,Σk)
∑K

j=1 πjN (xn|µj ,Σj)
+ λ

I If we now multiply both sides by πk and sum over k making use of the constraint∑K
k=1 πk = 1, we find λ = −N. Using this to eliminate λ and rearranging we obtain

πk =
Nk

N
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EM for Gassian mixture models

1. Initialize µk , Σk , and πk , and evaluate the initial value of the log likelihood.

2. E step Evaluate γ(znk) using the current parameter values

γ(znk) =
πkN (xn|µk ,Σk)

∑K
j=1 πjN (xn|µj ,Σj)

3. M step Re-estimate the parameters using the current value of γ(znk)

µk =
1

Nk

N∑

n=1

γ(znk)xn

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)T

πk =
Nk

N

where Nk =
∑N

n=1 γ(znk).

4. Evaluate the log likelihood ln p(x |µ, π,Σ) =
∑N

n=1 ln
[∑K

k=1 πkN (xn|µk ,Σk)
]

and check

for convergence of either the parameters or the log likelihood. If the convergence criterion

is not satisfied return to step 2.

Please read section 9.2 of Bishop.
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Model-based clustering (example)

9.2. Mixtures of Gaussians 437
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Figure 9.8 Illustration of the EM algorithm using the Old Faithful set as used for the illustration of the K-means
algorithm in Figure 9.1. See the text for details.

and the M step, for reasons that will become apparent shortly. In the expectation
step, or E step, we use the current values for the parameters to evaluate the posterior
probabilities, or responsibilities, given by (9.13). We then use these probabilities in
the maximization step, or M step, to re-estimate the means, covariances, and mix-
ing coefficients using the results (9.17), (9.19), and (9.22). Note that in so doing
we first evaluate the new means using (9.17) and then use these new values to find
the covariances using (9.19), in keeping with the corresponding result for a single
Gaussian distribution. We shall show that each update to the parameters resulting
from an E step followed by an M step is guaranteed to increase the log likelihood
function. In practice, the algorithm is deemed to have converged when the changeSection 9.4
in the log likelihood function, or alternatively in the parameters, falls below some
threshold. We illustrate the EM algorithm for a mixture of two Gaussians applied to
the rescaled Old Faithful data set in Figure 9.8. Here a mixture of two Gaussians
is used, with centres initialized using the same values as for the K-means algorithm
in Figure 9.1, and with precision matrices initialized to be proportional to the unit
matrix. Plot (a) shows the data points in green, together with the initial configura-
tion of the mixture model in which the one standard-deviation contours for the two
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Model-based clustering (GMM vs K -means)

1. consider a dataset clustered by K -means and GMM..

GMM vs K -means

For the GMM clustering (rightmost figure), the most probable cluster for each point has been labeled

Note that K -means, unlike GMM, tends to learn equi-sized clusters.

GMM with ⌃k = I and ⇡k = 1/K , and soft assignments converted to hard assign. (setting the largest
prob. to 1, rest to 0), is equivalent to K -means.

Pic courtesy: https://en.wikipedia.org/wiki/Expectation-maximization_algorithm/

Machine Learning (CS771A) Generative Models for Clustering, GMM, and Intro to EM 16

2. For the GMM clustering, the most probable cluster for each point has been labeled.

3. K -means, unlike GMM, tends to learn equi-sized clusters.

4. In what situation, the results of GMM is equivalent to the results of K -means? (do it.)
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Cluster validation and assessment

I How good is the clustering generated by a method?

I How can we compare the clusterings generated by different methods?

I Clustering is an unupervised learning technique and it is hard to evaluate the quality of the

output of any given method.

I If we use probabilistic models, we can always evaluate the likelihood of a test set, but this

has two drawbacks:

1. It does not directly assess any clustering that is discovered by the model.

2. It does not apply to non-probabilistic methods.

I We discuss some performance measures not based on likelihood.

I The goal of clustering is to assign points that are similar to the same cluster, and to

ensure that points that are dissimilar are in different clusters.

I There are several ways of measuring these quantities

1. Internal criterion : Typical objective functions in clustering formalize the goal of attaining

high intra-cluster similarity and low inter-cluster similarity. But good scores on an internal

criterion do not necessarily translate into good effectiveness in an application. An alternative

to internal criteria is direct evaluation in the application of interest.

2. External criterion : Suppose we have labels for each object. Then we can compare the

clustering with the labels using various metrics. We will use some of these metrics later,

when we compare clustering methods.
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Purity

I Purity is a simple and transparent evaluation measure. Consider the following clustering.

25.1. Introduction 877

Figure 25.1 Three clusters with labeled objects inside. Based on Figure 16.4 of (Manning et al. 2008).

Clustering is an unupervised learning technique, so it is hard to evaluate the quality of the output
of any given method. If we use probabilistic models, we can always evaluate the likelihood of
a test set, but this has two drawbacks: first, it does not directly assess any clustering that is
discovered by the model; and second, it does not apply to non-probabilistic methods. So now
we discuss some performance measures not based on likelihood.

Intuitively, the goal of clustering is to assign points that are similar to the same cluster,
and to ensure that points that are dissimilar are in different clusters. There are several ways
of measuring these quantities e.g., see (Jain and Dubes 1988; Kaufman and Rousseeuw 1990).
However, these internal criteria may be of limited use. An alternative is to rely on some external
form of data with which to validate the method. For example, suppose we have labels for each
object, as in Figure 25.1. (Equivalently, we can have a reference clustering; given a clustering, we
can induce a set of labels and vice versa.) Then we can compare the clustering with the labels
using various metrics which we describe below. We will use some of these metrics later, when
we compare clustering methods.

25.1.2.1 Purity

Let Nij be the number of objects in cluster i that belong to class j, and let Ni =
∑C

j=1 Nij be
the total number of objects in cluster i. Define pij = Nij/Ni; this is the empirical distribution
over class labels for cluster i. We define the purity of a cluster as pi ! maxj pij , and the
overall purity of a clustering as

purity !
∑

i

Ni

N
pi (25.5)

For example, in Figure 25.1, we have that the purity is
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5 + 4 + 3

17
= 0.71 (25.6)

The purity ranges between 0 (bad) and 1 (good). However, we can trivially achieve a purity of
1 by putting each object into its own cluster, so this measure does not penalize for the number
of clusters.

25.1.2.2 Rand index

Let U = {u1, . . . , uR} and V = {v1, . . . , VC} be two different partitions of the N data points,
i.e., two different (flat) clusterings. For example, U might be the estimated clustering and V
is reference clustering derived from the class labels. Now define a 2 × 2 contingency table,

I Let Nij be the number of objects in cluster i that belongs to class j and Ni =
∑C

j=1 Nij be

the total number of objects in cluster i .

I We define purity of cluster i as pi , max
j

(
Nij

Ni

)
, and the overall purity of a clustering as

purity ,
∑

i

Ni

N
pi .

I For the above figure, the purity is

6

17

5

6
+

6

17

4

6
+

5

17

3

5
=

5 + 4 + 3

17
= 0.71

I Bad clusterings have purity values close to 0, a perfect clustering has a purity of 1.

I High purity is easy to achieve when the number of clusters is large. In particular, purity is

1 if each point gets its own cluster. Thus, we cannot use purity to trade off the quality of

clustering against the number of clusters.
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Rand index

I Let U = {u1, . . . , uR} and V = {v1, . . . , vC} be two different (flat) clustering of N data

points.

I For example, U might be the estimated clustering and V is reference clustering derived

from the class labels.

I Define a 2× 2 contingency table, containing the following numbers:

1. TP is the number of pairs that are in the same cluster in both U and V (true positives);

2. TN is the number of pairs that are in different clusters in bothU and V (true negatives);

3. FN is the number of pairs that are in different clusters in U but the same cluster in V (false

negatives);

4. FP is the number of pairs that are in the same cluster in U but different clusters in V (false

positives).

I Rand index is defined as

RI , TP + TN

TP + FP + FN + TN

Rand index can be interpreted as the fraction of clustering decisions that are correct.

Clearly RI ∈ [0, 1].
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Rand index (example)

I Consider the following clustering

25.1. Introduction 877

Figure 25.1 Three clusters with labeled objects inside. Based on Figure 16.4 of (Manning et al. 2008).

Clustering is an unupervised learning technique, so it is hard to evaluate the quality of the output
of any given method. If we use probabilistic models, we can always evaluate the likelihood of
a test set, but this has two drawbacks: first, it does not directly assess any clustering that is
discovered by the model; and second, it does not apply to non-probabilistic methods. So now
we discuss some performance measures not based on likelihood.

Intuitively, the goal of clustering is to assign points that are similar to the same cluster,
and to ensure that points that are dissimilar are in different clusters. There are several ways
of measuring these quantities e.g., see (Jain and Dubes 1988; Kaufman and Rousseeuw 1990).
However, these internal criteria may be of limited use. An alternative is to rely on some external
form of data with which to validate the method. For example, suppose we have labels for each
object, as in Figure 25.1. (Equivalently, we can have a reference clustering; given a clustering, we
can induce a set of labels and vice versa.) Then we can compare the clustering with the labels
using various metrics which we describe below. We will use some of these metrics later, when
we compare clustering methods.

25.1.2.1 Purity

Let Nij be the number of objects in cluster i that belong to class j, and let Ni =
∑C

j=1 Nij be
the total number of objects in cluster i. Define pij = Nij/Ni; this is the empirical distribution
over class labels for cluster i. We define the purity of a cluster as pi ! maxj pij , and the
overall purity of a clustering as

purity !
∑

i

Ni

N
pi (25.5)

For example, in Figure 25.1, we have that the purity is

6

17

5

6
+

6

17

4

6
+

5

17

3

5
=

5 + 4 + 3

17
= 0.71 (25.6)

The purity ranges between 0 (bad) and 1 (good). However, we can trivially achieve a purity of
1 by putting each object into its own cluster, so this measure does not penalize for the number
of clusters.

25.1.2.2 Rand index

Let U = {u1, . . . , uR} and V = {v1, . . . , VC} be two different partitions of the N data points,
i.e., two different (flat) clusterings. For example, U might be the estimated clustering and V
is reference clustering derived from the class labels. Now define a 2 × 2 contingency table,

I The three clusters contain 6, 6 and 5 points, so we have

TP + FP =

(
6

2

)
+

(
6

2

)
+

(
5

2

)
= 40.

I The number of true positives

TP =

(
5

2

)
+

(
4

2

)
+

(
3

2

)
+

(
2

2

)
= 20.

I Then FP = 40− 20 = 20. Similarly, FN = 24 and TN = 72.

I Hence Rand index

RI =
20 + 72

20 + 20 + 24 + 72
= 0.68.

I Rand index only achieves its lower bound of 0 if TP = TN = 0, which is a rare event. We

can define an adjusted Rand index

ARI , index − E[index ]

max index − E[index ]
.
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Mutual information

I Another measure of cluster quality is computing mutual information between U and V .

I PUV (i , j) =
|ui∩vj |

N is the probability that a randomly chosen object belongs to cluster ui in

U and vj in V .

I PU(i) = |ui |
N is the probability that a randomly chosen object belongs to cluster ui in U.

I PV (j) =
|vj |
N is the probability that a randomly chosen object belongs to cluster vj in V .

I Then mutual information is defined

I(U,V ) ,
R∑

i=1

C∑

j=1

PUV (i , j) log
PUV (i , j)

PU(i)PV (j)

I This lies between 0 and min{H(U),H(V )}.
I The maximum value can be achieved by using a lots of small clusters, which have low

entropy.

I To compensate this, we can use normalized mutual information (NMI)

NMI (U,V ) , I(U,V )
1
2 [H(U) + H(V )]

I This lies between 0 and 1.

Please read section 25.1 of Murphy.
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Reading



Readings

1. Chapter 9 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Sections 11.2.3 & 1.4 & 25.1 & 25.5 of Machine Learning: A probabilistic perspective

(Murphy 2012).

3. Chapter 21 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?

cba
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