
Machine learning

Reinforcement Learning

Hamid Beigy

Sharif University of Technology

January 3, 2022

Table of contents

1. Introduction

2. Non-associative reinforcement learning

3. Associative reinforcement learning

4. Goals,rewards, and returns

5. Markov decision process

6. Model based methods

7. Value-based methods

8. Policy-based methods

9. Reading

1/38

Introduction

Introduction (Faces of RL)

Many Faces of Reinforcement Learning

Computer Science

Economics

Mathematics

Engineering Neuroscience

Psychology

Machine
Learning

Classical/Operant
Conditioning

Optimal
Control

Reward
System

Operations
Research

Rationality/
Game Theory

Reinforcement
Learning

2/38

Introduction

I Reinforcement learning is what to do (how to map situations to actions) so as to

maximize a scalar reward/reinforcement signal

I The learner is not told which actions to take as in supervised learning, but discover which

actions yield the most reward by trying them.

I The trial-and-error and delayed reward are the two most important feature of

reinforcement learning.

I Reinforcement learning is defined not by characterizing learning algorithms, but by

characterizing a learning problem.

I Any algorithm that is well suited for solving the given problem, we consider to be a

reinforcement learning.

I One of the challenges that arises in reinforcement learning and other kinds of learning is

tradeoff between exploration and exploitation.

3/38

Introduction

I A key feature of reinforcement learning is that it explicitly considers the whole problem of

a goal-directed agent interacting with an uncertain environment.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

4/38

Introduction (State)

I Experience is a sequence of observations, actions, rewards.

o1, r1, a1, . . . , at−1, ot , rt

I The state is a summary of experience

st = f (o1, r1, a1, . . . , at−1, ot , rt)

I In a fully observed environment

st = f (ot)

5/38

Elements of RL

I Policy : A policy is a mapping from received states of the environment to actions to be

taken (what to do?).

I Reward function: It defines the goal of RL problem. It maps each state-action pair to a

single number called reinforcement signal, indicating the goodness of the action. (what is

good?)

I Value : It specifies what is good in the long run. (what is good because it predicts

reward?)

I Model of the environment (optional): This is something that mimics the behavior of the

environment. (what follows what?)

6/38

An example : Tic-Tac-Toe

I Consider a two-playes game (Tic-Tac-Toe)

X

X

X

O O

XO

..

•

our move{
opponent's move{

our move{

starting position

•

•

•

a

b

c*

d

ee*

opponent's move{

c

•f

•g*g

opponent's move{
our move{

.

•

e

I Consider the following updating

V (s)← V (s) + α[V (s ′)− V (s)]

7/38

Types of reinforcement learning

I Non-associative reinforcement learning : The learning method that does not involve

learning to act in more than one state.

Author's personal copy

of actions and applies it to a random environment. The random environment evaluates the applied action and gives it a
response. The response from the environment is used by automaton to modify its action probabilities (p) and to select its
next action. By continuing this process, the automaton learns to select the action with the highest reward. The interaction
of an automaton with its environment is shown in Fig. 2.

An automaton acting in an unknown random environment and improves its performance using a learning algorithm in
some specified manner, is referred to as learning automaton (LA). The crucial factor affecting the performance of a learning
automaton is learning algorithm. Various learning algorithms have been reported in the literature. Let ai be the action chosen
at time k as a sample realization from probability distribution pðkÞ. In linear reward-inaction algorithm the recurrence equa-
tion for updating pjðnÞ for j ¼ 1;2; . . . ; r is defined as

pjðnþ 1Þ ¼
pjðnÞ % a½1% bðnÞ'pjðnÞ j–i
pjðnÞ þ a½1% bðnÞ'

P
k–i

pkðnÞ j ¼ i;

8
<

: ð6Þ

where parameter 0 < a < 1 represent step length that determines the amount of increase of the action probabilities, r is the
number of actions for learning automaton and 0 6 bðnÞ 6 1 is the response of the environment, where smaller values of bðnÞ
means more favorable response. If output of the environment is binary, i.e. bðnÞ 2 f0;1g, where 0 is for reward and 1 is for
penalty, the environment is called P-model and the algorithm is denoted by LR%I . If output of the environment takes a finite
number of values in interval ½0;1', the environment is called Q-model and if output of the environment lies in interval ½0;1',
the environment is denoted by S-model. In Q- and S-model environments the algorithm is called SLR%I . Learning automata
have been used successfully in many applications such as routing and call admission control in computer network [13–
15], solving NP-Complete problems [16–19], capacity assignment [20,21], neural network engineering [22–26], cellular net-
works [6], and too many other applications [27–29] to mention a few.

4. Dynamic guard channel algorithms

In this section, we consider cellular networks with two classes of calls and introduce two learning automata based algo-
rithms to determine the near optimal number of the guard channels when parameters kn, kh and l are unknown and possibly
time varying. In these algorithms, learning automata are used to adapt the number of guard channels as the network
operates. Let gðtÞ be the number of guard channels at time instant T which takes values in interval gmin; gmax½ ', (for
0 6 gmin < gmax 6 C). In these algorithms, each base station uses one learning automaton with action set a ¼
fa1;a2; . . . ;arg, where r ¼ gmax % gmin þ 1. Selection of action ai by learning automaton means that the base station uses
gðtÞ ¼ gmin þ ai % 1 guard channels. The operation of these algorithms can be described as follows. These algorithms accept
handoff calls as long as the cell has free channels. When a new call arrives at a given cell, the learning automaton assigned to
this cell chooses one of its actions, say ai. If the cell has at least gmin þ ai % 1 free channels, then the call will be accepted;
otherwise it will be blocked. Then the base station computes the current estimate of the dropping probability of handoff calls
ðbBhÞ and based on the result of comparison of this quantity with the specified level of QoS ðphÞ, the reinforcement signal is
produced and the action probability vector of the learning automaton updated using a learning algorithm. The differences
between the proposed algorithms are the way that they produce reinforcement signal for the learning automata and the
learning algorithm used to update the action probability vector.

4.1. Dynamic guard channel algorithm I

This algorithm, which is depicted in Algorithm 2, uses an SLR%I learning automaton in each cell of the network. The rein-
forcement signal at time instant n is generated using the following expression.

bðnÞ ¼ w bBh % ph

!!!
!!!

" #
; ð7Þ

where w : R! ½0;1' is a projection function. The projection function wð:Þ is considered to be a continuous, nondecreasing and
non-negative function that maps the set of real numbers ðRÞ into ½0;1', for example wðxÞ ¼ x can be a projection function,
which maps ½0;1' into ½0;1'. The continuity of w is needed because the response produced by the environment is a real num-
ber in interval ½0;1', the non-negativity of function w is needed in order to maintain the reward and penalty nature of updat-

Fig. 2. The interaction of an automaton and its environment.

604 H. Beigy, M.R. Meybodi / Computers and Electrical Engineering 37 (2011) 601–613

I Associative reinforcement learning : The learning method that involves learning to act in

more than one state.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

8/38

Non-associative reinforcement learning

Multi-arm Bandit problem

I Consider that you are faced repeatedly with a choice among n different options or actions.

I After each choice, you receive a numerical reward chosen from a stationary probability

distribution that depends on the action you selected.

I Your objective is to maximize the expected total reward over some time period.

I This is the original form of the n−armed bandit problem called a slot machine.

9/38

Action-value methods

I Consider some simple methods for estimating the values of actions and then using the

estimates to select actions.

I Let the true value of action a denoted as Q∗(a) and its estimated value at tth play as

Qt(a).

I The true value of an action is the mean reward when that action is selected.

I One natural way to estimate this is by averaging the rewards actually received when the

action was selected.

I In other words, if at the tth play action a has been chosen ka times prior to t, yielding

rewards r1, r2, . . . , rka , then its value is estimated to be

Qt(a) =
r1 + r2 + . . .+ rka

ka

10/38

Action selection strategies

I Greedy action selection : This strategy selects the action with highest estimated action

value.

at = argmax
a

Qt(a)

I ε−greedy action selection : This strategy selects the action with highest estimated action

value most of time but with small probability ε selects an action at random, uniformly,

independently of the action-value estimates.

I Softmax action selection : This strategy selects actions using the action probabilities as a

graded function of estimated value.

pt(a) =
expQt(a)/τ∑
b expQt(b)/τ

11/38

Learning automata

I Environment represented by a tuple < α, β,C >,

1. α = {α1, α2, . . . , αr} shows a set of inputs,

2. β = {0, 1} represents the set of values that the reinforcement signal can take,

3. C = {c1, c2, . . . , cr} is the set of penalty probabilities, where ci = Prob[β(k) = 1|α(k) = αi].

I A variable structure learning automaton is represented by triple < β,α,T >,

1. β = {0, 1} is a set of inputs,

2. α = {α1, α2, . . . , αr} is a set of actions,

3. T is a learning algorithm used to modify action probability vector p.

12/38

LR−εP learning algorithm

I In linear reward-εpenalty algorithm (LR−εP) updating rule for p is defined as

pj(k + 1) =

{
pj(k) + a× [1− pj(k)] if i = j

pj(k)− a× pj(k) if i 6= j

when β(k) = 0 and

pj(k + 1) =

{
pj(k)× (1− b) if i = j
b

r−1 + pj(k)(1− b) if i 6= j

when β(k) = 1.

I Parameters 0 < b � a < 1 represent step lengths.

I When a = b, we call it linear reward penalty(LR−P) algorithm.

I When b = 0, we call it linear reward inaction(LR−I) algorithm.

13/38

Measure learning in learning automata

I In stationary environments, average penalty received by automaton is

M(k) = E [β(k)|p(k)] = Prob[β(k) = 1|p(k)] =
r∑

i=1

cipi (k).

I A learning automaton is called expedient if

lim
k→∞

E [M(k)] < M(0)

I A learning automaton is called optimal if

lim
k→∞

E [M(k)] = min
i

ci

I A learning automaton is called ε−optimal if

lim
k→∞

E [M(k)] < min
i

ci + ε

for arbitrary ε > 0

14/38

Associative reinforcement learning

Associative reinforcement learning

The learning method that involves learning to act in more than one state.

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

15/38

Goals,rewards, and returns

Goals,rewards, and returns

I In reinforcement learning, the goal of the agent is formalized in terms of a special reward

signal passing from the environment to the agent.

I The agent’s goal is to maximize the total amount of reward it receives. This means

maximizing not immediate reward, but cumulative reward in the long run.

I How might the goal be formally defined?

I In episodic tasks the return, Rt , is defined as

Rt = r1 + r2 + . . .+ rT

I In continuous tasks the return, Rt , is defined as

Rt =
∞∑
k=0

γk rt+k+1

I The unified approach

r1 = +1
s0 s1

r2 = +1
s2

r3 = +1 r4 = 0
r5 = 0

∑

16/38

Markov decision process

Markov decision process

I A RL task satisfing the Markov property is called a Markov decision process (MDP).

I If the state and action spaces are finite, then it is called a finite MDP.

I A particular finite MDP is defined by its state and action sets and by the one-step

dynamics of the environment.

Pa
ss′ = Prob{st+1 = s ′|st = s, at = a}
Ra

ss′ = E [rt+1|st = s, at = a, st+1 = s ′]

I Recycling Robot MDP

search

high low
1, 0

 1–β , –3

search

recharge

wait

wait

search1–α , R

β , R search

α, Rsearch

1, R�
wait

1, R�
wait

{∑ ∣∣∣∣

}

{∑ ∣∣∣∣

}

17/38

Value functions

I Let in state s action a is selected with probability of π(s, a).

I Value of state s under a policy π is the expected return when starting in s and following π

thereafter.

V π(s) = Eπ{Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1

∣∣∣∣∣ st = s

}
=

∑
π

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)] .

I Value of action a in state s under a policy π is the expected return when starting in s

taking action a and following π thereafter.

Qπ(s, a) = Eπ{Rt |st = s, at = a} = Eπ

{ ∞∑
k=0

γk rt+k+1

∣∣∣∣∣ st = s, at = a

}

18/38

Optimal value functions

I Policy π is better than or equal of π′ iff for all s V π(s) ≥ V π′(s).

I There is always at least one policy that is better than or equal to all other policies. This is

an optimal policy.

I Value of state s under the optimal policy (V ∗(s)) equals

V ∗(s) = max
π

V π(s)

I Value of action a in state s under the optimal policy (Q∗(s, a) equals

Q∗(s, a) = max
π

Qπ(s, a)

I Backup diagram for V ∗ and Q∗

s,as

a

s'

r

a'

s'

r

(b)(a)

max

max

{ ∣∣∣∣

}

∑ []

19/38

Approaches to RL

1. Model-based RL

1.1 Build a model of the environment.

1.2 Plan (e.g. by lookahead) using model.

2. Value-based RL

2.1 Estimate the optimal value function Q∗(s, a)

2.2 This is the maximum value achievable under any policy

3. Policy-based RL

3.1 Search directly for the optimal policy π∗.

3.2 This is the policy achieving maximum future reward.

20/38

Model based methods

Model based methods (dynamic programming)

I The key idea of DP is the use of value functions to organize and structure the search for

good policies.

I We can easily obtain optimal policies once we have found the optimal value functions, or ,

which satisfy the Bellman optimality equations:

V ∗(s) = max
a

E{rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a

∑
s′

Pa
ss′ [Ra

ss′ + γV ∗(s ′)] .

I Value of action a in state s under a policy π is the expected return when starting in s

taking action a and following π thereafter.

Q∗(s, a) = E{rt+1 + γmax
a′

Q∗(st+1, a
′)|st = s, at = a}

=
∑
s′

Pa
ss′

[
Ra

ss′ + γmax
a′

Q∗(s ′, a′)
]
.

21/38

Policy iteration

I Policy iteration is an iterative process

π0
E−−−→V π0

I−−→π1 E−−−→V π1
I−−→π2 E−−−→

I−−→π∗ E−−−→V ∗

I Policy iteration has two phases : policy evaluation and improvement.

I In policy evaluation, we compute state or state-action value functions

V π(s) = Eπ{Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1

∣∣∣∣∣ st = s

}
=

∑
π

π(s, a)
∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)] .

I In policy improvement, we change the policy to obtain a better policy

π′(s) = argmax
a

Qπ(s, a)

= argmax
a

∑
s′

Pa
ss′ [Ra

ss′ + γV π(s ′)] .

22/38

Value and generalized policy iteration

I In value iteration we have

Vk+1(s) = max
a

E{rt+1 + γVk(st+1)|st = s, at = a}

= max
a

∑
s′

Pa
ss′

[
Ra

ss′ + γV
(
k s
′)
]
.

I Generalized policy iteration

π V

evaluation

improvement

V →V
π

π→greedy(V)

Vπ

23/38

DP Backup diagram

V (St)← Eπ[Rt+1 + γV (St+1)]

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Unified View

Dynamic Programming Backup

V (St) E⇡ [Rt+1 + �V (St+1)]

T!

T! T! T!

st

rt+1
st+1

T!

T!T!

T!

T!T!

T!

T!

T!

24/38

Value-based methods

Value-based methods

I These methods lean policy function implicitly.

I These methods first learn a value function Q(s, a).

I Then infer policy π(s, a) from Q(s, a).

I Examples

I Monte-carlo methods
I Q-learning
I SARSA
I TD(λ)

25/38

Value-based methods

Monte Carlo methods

Monte Carlo (MC) methods

I MC methods learn directly from episodes of experience.

I MC is model-free: no knowledge of MDP transitions / rewards

I MC learns from complete episodes

I MC uses the simplest possible idea: value = mean return

I Goal: learn Vπ from episodes of experience under policy π

S1
α1−→
R1

S2
α2−→
R2

S3
α3−→
R3

S4 . . .
αk−1−−−→
Rk−1

Sk

I The return is the total discounted reward:

Gt = Rt+1 + γRt+2 + . . .+ γT−1RT

I The value function is the expected return:

Vπ(s) = Eπ[Gt |St = s]

I Monte-Carlo policy evaluation uses empirical mean return instead of expected return

26/38

First-Visit Monte-Carlo Policy Evaluation

I To evaluate state s

I The first time-step t that state s is visited in an episode, Increment counter

N(s)← N(s) + 1

I Increment total return

S(s)← S(s) + Gt

I Value is estimated by mean return

V (s) =
S(s)

N(s)

I By law of large numbers,

V (s)→ vπ(s)

as

N(s)→∞

27/38

Every-Visit Monte-Carlo Policy Evaluation

I To evaluate state s

I Every time-step t that state s is visited in an episode, Increment counter

N(s)← N(s) + 1

I Increment total return

S(s)← S(s) + Gt

I Value is estimated by mean return

V (s) =
S(s)

N(s)

I By law of large numbers,

V (s)→ vπ(s)

as

N(s)→∞

28/38

MC Backup diagram

V (St)← V (St) + α(Gt − V (St))

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Unified View

Monte-Carlo Backup

V (St) V (St) + ↵ (Gt � V (St))

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

29/38

Value-based methods

Temporal-difference methods

Temporal-difference methods

I TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas.

I Like Monte Carlo methods, TD methods can learn directly from raw experience without a

model of the environment’s dynamics.

I Like DP, TD methods update estimates based in part on other learned estimates, without

waiting for a final outcome (they bootstrap).

I Monte Carlo methods wait until the return following the visit is known, then use that

return as a target for V (st) while TD methods need wait only until the next time step.

I The simplest TD method, known as TD(0), is

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

30/38

Temporal-Difference Backup

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

Lecture 4: Model-Free Prediction

Temporal-Di↵erence Learning

Unified View

Temporal-Di↵erence Backup

V (St) V (St) + ↵ (Rt+1 + �V (St+1)� V (St))

T! T! T! T!T!

T! T! T! T! T!

st+1
rt+1

st

T!T!T!T!T!

T! T! T! T! T!

31/38

Temporal-difference methods (cont.)

I Algorithm for TD(0)

32/38

Temporal-difference methods (SARSA)

I An episode consists of an alternating sequence of states and state-action pairs:

st+2,at+2st+1,at+1

rt+2
rt+1st st+1

st ,at

st+2

I SARSA, which is an on policy, updates values using

Q(st , at)← Q(st , at) + α [rt+1 + γQ(st+1, at+1)− Q(st , at)]

33/38

Temporal-difference methods (Q-learning)

I An episode consists of an alternating sequence of states and state-action pairs:

st+2,at+2st+1,at+1

rt+2
rt+1st st+1

st ,at

st+2

I Q-learning, which is an off policy, updates values using

Q(st , at)← Q(st , at) + α
[
rt+1 + γmax

a
Q(st+1, a)− Q(st , at)

]

34/38

Policy-based methods

Policy-based methods

I In policy-based learning, there is no value function.

I The policy π(s, a) is parametrized by vector θ (π(s, a; θ)).

I Explicitly learn policy π(s, a; θ) that implicitly maximize reward over all policies.

I Given policy π(s, a; θ) with parameters θ, find best θ.

I How do we measure the quality of a policy π(s, a; θ)?

I Let objective function be J(θ) .

I Find policy parameters θ that maximize J(θ) .

I Sample algorithm: REINFORCE

35/38

Policy-based methods versus value-based methods

I Advantages of policy-based methods over value-based methods

I Usually, computing Q-values is harder than picking optimal actions
I Better convergence properties
I Effective in high dimensional or continuous action spaces
I Can benefit from demonstrations
I Policy subspace can be chosen according to the task
I Exploration can be directly controlled
I Can learn stochastic policies

I Disadvantages of policy-based methods over value-based methods

I Typically converge to a local optimum rather than a global optimum
I Evaluating a policy is typically data inefficient and high variance

36/38

Reading

Readings

1. Chapters 1-6 of Reinforcement Learning: An Introduction (Sutton and Barto 2018).

37/38

References i

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduction.

Second edition. The MIT Press.

38/38

Questions?

cba

38/38

	Introduction
	Non-associative reinforcement learning
	Associative reinforcement learning
	Goals,rewards, and returns
	Markov decision process
	Model based methods
	Value-based methods
	Monte Carlo methods
	Temporal-difference methods

	Policy-based methods
	Reading

