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Introduction



Introduction

I In regression, c(x) is a continuous function. Hence the training set is in the form of

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}, tk ∈ R.

I When there is no noise, the task is interpolation and our goal is to find a function f (x)

that passes through these points. Hence

tk = f (xk) ∀k = 1, 2, . . . ,N

I In polynomial interpolation, given N points, we find (N − 1)st degree polynomial to

predict the output for any x .

I If x is outside of the range of the training set, the task is called extrapolation.

I In regression, there is noise added to the output of the unknown function.

tk = f (xk) + ε ∀k = 1, 2, . . . ,N

f (xk) ∈ R is the unknown function and ε is the random noise.
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Introduction(cont.)

I In regression, there is noise added to the output of the unknown function.

tk = f (xk) + ε ∀k = 1, 2, . . . ,N

I The explanation for the noise is that there are extra hidden variables that we cannot

observe.

tk = f ∗(xk , zk) + ε ∀k = 1, 2, . . . ,N

zk denotes hidden variables
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Linear regression



Linear regression

I Our goal is to approximate the output by function g(x).

I The empirical error on the training set S is measured using loss/error/cost function.

I Squared Error from target EE (g(xi )|S) = (ti − g(xi ))2 .
I Linear error from target EE (g(xi )|S) = |ti − g(xi )| .
I Mean square error from target EE (g(x)|S) = 1

N

∑N
i=1 (ti − g(xi ))2 .

I Sum of square error from target EE (g(x)|S) = 1
2

∑N
i=1 (ti − g(xi ))2 .

I The aim is to find g(.) that minimizes the empirical error.

I We assume that a hypothesis class for g(.) with a small set of parameters.

I Assume that g(x) is linear

g(x) = w0 + w1x1 + w2x2 + . . .+ wDxD
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Linear regression(cont.)

I In the linear regression, when D = 1

g(x) = w0 + w1x

I Parameters w0 and w1 should minimize the empirical error

EE (w0,w1|S) = EE (g(x)|S) =
1

2

N∑
i=1

[tk − (w0 + w1xk)]2

I This error function is a quadratic function of W and its derivative is linear w.r.t W . Its

minimization has a unique solution denoted by W ∗.

I Taking derivative of error w.r.t w0 and w1 and setting equal to zero

w0 = t̄ − w1x̄

w1 =

∑
k tkxk − x̄ t̄N∑

k(xk)2 − N(x̄)2

t̄ =

∑N
k=1 tk
N

x̄ =

∑N
k=1 xk
N
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Linear Regression(cont.)

I When the input variables form a D−dimensional vector, the linear regression model is

g(x) = w0 + w1x1 + w2x2 + . . .+ wDxD .

I Parameters w0,w1, . . . ,wD should minimize the empirical error

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2
.

I Taking derivative of error w.r.t ws and setting equal to zero,
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Linear Regression(cont.)

I Taking derivative of error w.r.t ws and setting equal to zero,

N∑
k=1

tk = Nw0 + w1

N∑
k=1

xk1 + w2

N∑
k=1

xk2 + . . .+ wD

N∑
k=1

xkD

N∑
k=1

xk1tk = w0

N∑
k=1

xk1 + w1

N∑
k=1

(xk1)2 + w2

N∑
k=1

xk1xk2 + . . .+ wD

N∑
k=1

xk1xkD

N∑
k=1

xk2tk = w0

N∑
k=1

xk2 + w1

N∑
k=1

xk1xk2 + w2

N∑
k=1

(xk2)2 + . . .+ wD

N∑
k=1

xk2xkD

...
N∑

k=1

xkDtk = w0

N∑
k=1

xkD + w1

N∑
k=1

xk1xkD + w2

N∑
k=1

xk2xkD + . . .+ wD

N∑
k=1

(xkD)2
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Linear Regression(cont.)

I Define the following vectors and Matrix

I Data matrix

X =


1 x11 x12 . . . x1D

1 x21 x22 . . . x2D

...
...

1 xN1 xN2 . . . xDD


I The k th input vector

Xk = (1, xk1, xk2, . . . , xkD)>

I The weight vector

W = (w0,w1,w2, . . . ,wD)>

I The target vector

t = (t1, t2, t3, . . . , tN)>
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Linear Regression(cont.)

I The empirical error is equal to

EE (g(x)|S) =
1

2

N∑
k=1

(
tk −W>Xk

)2
.

I The gradient of EE (g(x)|S) is

∇WEE (g(x)|S) =
N∑

k=1

(
tk −W>Xk

)
X>k

=
N∑

k=1

tkX
>
k −W>

N∑
k=1

XkX
>
k = 0

I Solving for W , we obtain

W ∗ =
(
X>X

)−1
X>t

I When X>X is invertible, the problem has a unique solution.

I When X>X is not invertible, the pseudo inverse is used and the problem has several

solution.
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Regression(cont.)

I If the linear model is too simple, the model can be a polynomial (a more complex

hypothesis set)

g(x) = w0 + w1x + w2x
2 + . . .+ wMxM .

I M is the order of the polynomial.

I Choosing the right value of M is called model selection.

I For M = 1, we have a too general model

I For M = 9, we have a too specific model
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Model selection



Regression(Model selection)

I The goal of model selection is to achieve good generalization by making accurate

predictions for new data.

I The generalization ability of a model is measured by a separate test data generated using

exactly the same process used for generating training data.

I The model is chosen using a validation data set.

I Two models sometimes are compared using root mean square (RMS) error.

ERMS =
√

2EE (W ∗|S)/N

I This allows comparison on different sizes of data sets.
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Sample size



Regression(Sample size)

I For a given model complexity, the over-fitting problem become less severe as the size of

the data set increases.
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Linear Regression(cont.)

I We can extend the class of models by considering linear combinations of fixed nonlinear

functions of the input variables, of the form

g(x) = w0 +
M−1∑
j=1

wjφj(x)

.

I φj(x) are known as basis functions.
I M is total number of parameters.
I w0 is called bias parameter.

I Usually a dummy basis function φ0(x) = 1 is used

g(x) =
M∑
j=0

wjφj(x) = W>Φ(x)

.

I W = (w0,w1, . . . ,wM−1)> and Φ = (φ0, φ1, . . . , φM−1)>.
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Linear Regression(cont.)

I In pre-processing phase, the features can be expressed in terms of the basis functions

{φj(x)}.
I Examples of basis functions

I Polynomial basis function φj(x) = x j .
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Linear Regression(cont.)

I Examples of basis functions

I Gaussian basis function φj(x) = exp

{
(x−µj)

2

2s2

}
.

I µj is location of the basis function.
I s is the spatial scale of the basis function.

15/41



Linear Regression(cont.)

I Examples of basis functions

I Logistic basis function φj(x) = σ
(

x−µj

s

)
.

I σ(a) = 1
1+exp(−a)

.

I Fourier basis function

I Wavelets basis function
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Linear Regression(cont.)

I The empirical error is equal to

EE (g(x)|S) =
1

2

N∑
k=1

(
tk −W>Φ(Xk)

)2
.

I The gradient of EE (g(x)|S) is

∇WEE (g(x)|S) =
N∑

k=1

(
tk −W>Φ(Xk)

)
Φ(Xk)>

=
N∑

k=1

tkΦ(Xk)> −W>
N∑

k=1

Φ(Xk)Φ(Xk)> = 0

I Solving for W , we obtain W ∗ =
(
Φ>Φ

)−1
Φ>t.

Φ =


φ0(x1) φ1(x1) φ2(x1) . . . φM−1(x1)

φ0(x2) φ1(x2) φ2(x2) . . . φM−1(x2)
...

...

φ0(xN) φ1(xN) φ2(xN) . . . φM−1(xN)
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Linear Regression(cont.)

I The quantity Φ† =
(
Φ>Φ

)−1
Φ> is known as Moore-Penrose pseudo-inverse.

I The bias value (w0)

w0 =
1

N

N∑
k=1

tk −
M−1∑
j=1

wjφj(Xk)

 .

and equals to the difference between target values and the weighted sum of the basis

function values.
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Probabilistic Linear Regression



Probabilistic Linear Regression

I Given N training examples S = {(x1, t1), . . . , (xN , tN)}, xk ∈ RD , output tk ∈ R.

I In probabilistic linear regression, outputs tk ’s are generated from a probabilistic model.

I We assume that the target variable t is given by a deterministic function f (x) with

additive Gaussian noise so that

t = f (x) + ε

where ε ∼ N (0, σ2) is a zero mean Gaussian random variable with precision (inverse

variance) β.

I Thus, t is also a Gaussian random variable with mean t and precision β.

p(t|x) = N (t|f (x), β−1).
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Probabilistic Linear Regression

I Since training examples are drawn i.i.d from the same distribution, the likelihood equals

L(W ) =
N∏

k=1

N (tk |g(x ;w), β−1) =
N∏

k=1

√
β√

2π
exp

{
−β (tk − g(xk))2

2

}
.

I The log-likelihood becomes

ln L(W ) =
N

2
lnβ − N

2
ln(2π)− β

2

N∑
k=1

(tk − g(xk))2
.

I Clearly, maximizing ln L(W ) equals to minimizing − ln L(W ).

I Removing constant terms yields

WML = argmin
W

1

2

N∑
k=1

(tk − g(xk))2
.
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Overfitting



Over-fitting

I Over-fitting occurs when a model begins to memorize training data rather than learning to

generalize from a trend.

I Too many parameters relative to the amount of training data
I For example, an order-N polynomial can be exact fit to N + 1 data points.
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Avoiding over-fitting

II Ways of detecting/avoiding over-fitting.

I Use more training data
I Evaluate on a parameter tuning set
I Regularization
I Take a Bayesian approach

I In a Linear Regression model, overfitting is characterized by large parameters.

I As M increase, the magnitude of the coefficients typically gets larger.
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Regularization



Regularization

I Introduce a penalty term for the size of the weights.

I Unregularized Regression

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2 .

I Regularized Regression

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2 + λΩ(W ).

I L2-Regularization or Ridge Regularization

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2 +
λ

2
||W ||2.

I Large λ leads to higher complexity penalization
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Regularization (cont.)

I Least squares regression with L2-regularization

∇WEE (g(x)|S) = ∇W

(
1

2

N∑
i=1

(ti − g(xi ))2 +
λ

2
||W ||2

)
(X>X + λI )W = X>t

W ∗ = (X>X + λI )−1X>t

I Graph of the root-mean-square error (RMSE) versus lnλ for the M = 9 polynomial.
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Regularization (cont.)

I L2-Regularization has Closed form solution and can be solved in polynomial time

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2 +
λ

2
||W ||2.

I L1-Regularization can be approximated in polynomial time

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2 + λ||W ||1.

I L0-Regularization is NP-complete optimization problem

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2 + λ

M−1∑
j=1

δ(wj 6= 0).

The L0-norm represents the optimal subset of features needed by a Regression model.

25/41



Regularization (cont.)

I A more general regularizer is sometimes used, for which the regularized error takes the form

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2 +
λ

2

M−1∑
j=1

|wj |q.

I When q = 2, it is called Ridge regularizer

I When q = l , it is called Lasso regularizer
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Maximum a posteriori and regularization



Maximum a posteriori estimation

I Assume that W is

p(W ) = N (0, σ2
0 ID).

I ID denotes the D × D identity matrix.

I This is equivalents to assume that the prior selects each component of W independently

from a N (0, σ2
0).

I This prior density can be written as

p(W ) =
1

(2π)D/2σD
0

exp

{
− 1

2σ2
0

||W ||22
}
.

I Assume that noise precision is known.

I The posterior density of W given set S takes the form

L(W ) ∝ exp

(
− 1

2σ2
0

||W ||22
)
×

N∏
k=1

exp

(
−β

2
(tk − g(xk))2

)
.
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Maximum a posteriori estimation

I The log-likelihood becomes

ln L(W ) = − 1

2σ2
0

||W ||22 −
β

2

N∑
k=1

(tk − g(xk))2 + const.

I Clearly, maximizing ln L(W ) equals to minimizing − ln L(W ).

I Removing constant terms yields

WMAP = argmin
W

1

2

N∑
k=1

(tk − g(xk))2 +
1

2σ2
0β
||W ||22.

I Setting λ = 1
σ2

0β
, results in L2− regularization.
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Geometric Interpretation



Geometry of least squares

I Consider an N−dimensional space whose axes are given by ti .

I t = (t1, t2, . . . , tN)> is a vector in this space.

I Each basis function φj(xn) is evaluated at the N data points can also be represented as a

vector in the same space.

I φj(xn) corresponds to j th column of Φ, i.e. φj(xn) = (φj(x1), φj(x2), . . . , φj(xN))>.

I Assume that M < N, then M vectors φj(xn) will span a linear subspace of dimensionality

M which embedded in N dimensions.

I Let y be an N-dimensional vector whose nth element is given by g(xn).

I Hence, there exists some weight vector W such that

t̂ =


t̂1

t̂2

...

t̂N

 =


φ0(x1) φ1(x1) φ2(x1) . . . φM−1(x1)

φ0(x2) φ1(x2) φ2(x2) . . . φM−1(x2)
...

...

φ0(xN) φ1(xN) φ2(xN) . . . φM−1(xN)




W0

W1

...

WN

 = ΦW

I We seek a t̂ = y ∈ RN that lies in this linear subspace and is close as possible to t, i.e, we

want to find

ŷ = argmin
y∈subspace(Φ(X ))

||t − y ||2
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Geometry of least squares

I The least square solution for W corresponds to that choice of y that lies in this subspace

and is close to t.

I In order to minimize the norm of the residual error (t − y), we want the residual error

vector be orthogonal to every column of Φ(X ) so that φj(xn)>(t − y) = 0, for

j = 0, 1, 2, . . . ,M − 1. (why?)

φj(xn)>(t − y) = 0 ⇒ Φ(X )>(t − Φ(X )W ) = 0

⇒ W = (Φ(X )>Φ(X ))−1Φ(X )t.

I Hence, our projected value corresponds to an orthogonal projection of t onto column

space of this subspace.
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Sequential learning



Sequential learning

I Batch techniques, such as the maximum likelihood solution, which involve processing the

entire training set in one go, can be computationally costly for large data sets.

I When data set is sufficiently large, it may be worthwhile to use sequential algorithms.

I In sequential algorithms, the data points are considered one at a time, and the model

parameters updated after each such presentation.

I We want to choose W so as to minimize EE (W |S).

I The algorithm starts with some initial guess for W and repeatedly updates W to make

EE (W |S) smaller until hopefully converges to a value of W that minimizes EE (W |S).

I This method is called gradient descent and is shown graphically for 1-dimensional problem.
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Sequential learning (cont.)

I Using the gradient descent rule, we have

W
(k+1)
j = W

(k)
j − η∇WEE (W |S).

I η called learning rate and controls the step size of movement.

I There are two methods for updating weights

I Batch gradient descent method

W
(k+1)
j = W

(k)
j − η∇WEE (W |S).

I Stochastic gradient descent method

W
(k+1)
j = W

(k)
j − η∇WEE (W |(xn, tn))

= W
(k)
j + η (tn − g(xn)) Φ(xn)

I This rule is called least-mean-squares (LMS) algorithm and also known as the Widrow-Hoff

learning rule.
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Multiple outputs regression



Multiple outputs regression

I We have considered the case of a single target variable t.

I In some applications, we may wish to predict K > 1 target variables, which we denote

collectively by the target vector t.

I This could be done by introducing a different set of basis functions for each component of

t, leading to multiple, independent regression problems.

I A more interesting, and more common, approach is to use the same set of basis functions

to model all of the components of the target vector so that

g(x) = W>φ(x).

I g(x) is a K−dimensional column vector.

I W is an M × K matrix of parameters.

I Φ(x) is an M−dimensional column vector with elements φj(x), with φ0(x) = 1.

I Suppose we take the conditional distribution of the target vector to be an isotropic

Gaussian of the form

p(t|x, β) = N (t|W>φ(x), β−1I).

I If we have a set of observations t1, . . . , tN , we can combine these into a matrix T of size

N × K such that the nth row is given by t>n .

I We can also combine the input vectors x1, . . . , xN into a matrix X .
33/41



Multiple outputs regression

I Since training examples are drawn i.i.d from the same distribution, the likelihood equals

ln L(W ) = ln p(T |W , β) =
N∑

n=1

N (t|W>φ(x), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑
n=1

||tn −W>φ(xn)||2

I We can maximize this function with respect to W , giving

WML = (Φ>Φ)−1Φ>T .

I If we examine this result for each target variable tk , we have

Wk = (Φ>Φ)−1Φ>tk.

tk is an N−dimensional column vector with components tnk for n = 1, 2, . . . ,N.

I The solution to the regression problem decouples between the different target variables,

and we need only compute a single pseudo-inverse matrix, which is shared by all of the

vectors Wk .
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Bias-Variance trade-off



Bias-Variance trade-off

I In regression, random noise ε is added to the output of the unknown function f (x) .

tk = f (xk) + ε ∀k = 1, 2, . . . ,N

I Given a set of training examples,

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}, tk ∈ R.

we fit a hypothesis g(x) to the data to minimize the following error function.

EE (g(x)|S) =
1

2

N∑
i=1

(ti − g(xi ))2
.

I Now, given a new data point x , we would like to understand the expected prediction error

E
[
(t − g(x))2

]
.

I Assume that x generated by the same process as the training set. We decompose

E
[
(t − g(x))2

]
] into bias, variance, and noise.
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Bias-Variance trade-off

I From definition of variance we have

E
[
(x − µx)2

]
= E

[
x2
]
− µ2

x

I Hence we have

E
[
x2
]

= E
[
(x − µx)2

]
+ µ2

x

I The error for new input x can be decomposed as

E
[
(t − g(x))2

]
= E

[
(t − f (x) + f (x)− g(x))2

]
= E

[
(t − f (x))2

]
+ E

[
(f (x)− g(x))2

]
+ 2E [(t − f (x))(f (x)− g(x)]

= E
[
(t − f (x))2

]
+ E

[
(f (x)− g(x))2

]

I The final term is zero. (Why? Show it.)

I Since t = f (x) + ε, Hence ε = t − f (x), and we have

E
[
(t − g(x))2

]
+ E

[
(f (x)− g(x))2

]
= E

[
ε2
]

+ E
[
(f (x)− g(x))2

]
= Var(ε) + E

[
(f (x)− g(x))2

]
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Bias-Variance trade-off

I Now consider the last term, we have

E
[
(f (x)− g(x))2

]
= E

[
(f (x)− E [g(x)] + E [g(x)]− g(x))2

]
= E

[
(f (x)− E [g(x)])2

]
+ E

[
(E [g(x)]− g(x))2]

]
+ 2E [(f (x)− E [g(x)])(E [g(x)]− g(x))]

I The first term is the squared bias.

I The second term is the variance and equals to (E [g(x)]− g(x))2 = E
[
g(x)2

]
− E [g(x)]2.

I The final term is zero. (Why? Show it.)

I Hence, we have

E
[
(t − g(x))2

]
= Bias2(g(x)) + Var(g(x)) + Var(ε)

= Bias2(g(x)) + Var(g(x)) + β−1

37/41



Bias-Variance trade-off

I In summary, we have

E
[
(t − g(x))2

]
= Bias2(g(x)) + Var(g(x)) + σ2

I The first term describes the average error of g(x).

I The second term quantifies how much g(x) deviates from one training set S to another

one. This depends on both the estimator and the training set.This term is consequence of

over-fitting.

I The last term is the variance of the added noise. This error cannot be removed no matter

what estimator we use. Note that the variance of the noise can not be minimized.

I In context of polynomial regression, as M increases, a small changes in the data sets

causes a greater change in the fitted function; thus variance increases.

I Our goal is to minimize the expected loss. There is a trade-off between bias and variance.
I Very flexible models have low bias and high variance.
I Relative rigid models have high bias and low variance.

I The model with optimal predictive capability is one that leads to the best balance between

bias and variance.

I If there is bias, there is under-fitting. why?

I If there is variance, there is over-fitting. why?
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Bias-Variance trade-off
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Readings

1. Chapter 3 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Chapter 7 of Machine Learning: A probabilistic perspective (Murphy 2012).

3. Chapter 11 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?
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