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Introduction



Introduction

1. In the case of

Gaussian class conditional densities

same covariance matrix

equal prior

the separating hyperplane is linear.

2. In this case, the separating hyperplane returned by linear regression coincides with the separating

hyperplane returned by Bayes classifier.
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Logistic regression



Introduction

1. If we replace sign with its soft-version, we obtain logistic regression.
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Sigmoid function

1. Function

h(x) =
1

1 + e−(⟨w,x⟩+w0)

is called a Sigmoid function.

2. Properties of Sigmoid function
Limits of Sigmoid function

h(z) → 1 as z → ∞
h(z) → 0 as z → −∞

Hence, h(z) can be regarded as a probability.

Derivative of h(z) equals to

∂h(z)

∂z
= h(z) [1− h(z)]

The derivative is always positive, and h is always is an increasing function. Hence, h can be

considered as a CDF.
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Loss function of Logistic regression

1. One loss function may be

ℓ(tn, h(xn)) = (tn − h(xn))
2

This loss function is not a convex function and is not easy to optimize.

2. The likelihood function can be written

p(t|w) =

{
yn tn = 1

(1− yn) tn = 0

3. If tn = 1 but yn is close to 0 then loss will be high.

4. If tn = 0 but yn is close to 1 then loss will be high.

5. The likelihood function can also be written

p(t|w) = y tn
n (1− yn)

(1−tn)

6. We can define a loss function by taking the negative logarithm of the likelihood.

L(w) = − ln
N∏

n=1

ℓ(tn, h(xn)) = −
N∑

n=1

[tn ln yn + (1− tn) ln(1− yn)]

7. This loss function is called the cross-entropy loss and is convex.
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Logistic regression (cont.)

1. Let tn ∈ {−1,+1}. Another way to write the log-likelihood of data is.

p(+1|x) =
1

1 + exp(−w⊤x)

p(−1|x) =
1

1 + exp(+w⊤x)

2. By combining the above equations and computing negative log-likelihood of data, we obtain

L(w) = −
N∑

n=1

ln
1

1 + exp(−tnw⊤xn)

=
N∑

n=1

ln
[
1 + exp(−tnw

⊤xn)
]

3. Unlike linear regression, we can no longer write down the minimum of negative log-likelihood in

the closed form. Instead, we need to use an optimization algorithm for computing it.
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Logistic regression (cont.)

1. Computing the gradients of L(w) with respect to w, we obtain

∇L(w) =
N∑

n=1

tnxn(yn − tn)

2. Updating the weight vector using the gradient descent rule will result in

w(k+1) = w(k) − η
N∑

n=1

tnxn(yn − tn)

η is the learning rate.

3. In order to have a good trade-off between the training error and the generalization error, we can

add the regularization term.

L(w) =
N∑

n=1

log
[
1 + exp(−tnw

⊤xn)
]
+

λ

2
∥w∥2

4. Using the gradient descent rule, will result in the following updating rule.

w(k+1) = w(k) − η
N∑

n=1

tnxn(yn − tn)− λw(k)
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MLE formulation of Logistic regression



MLE formulation of Logistic regression

1. In linear regression, we often assume that the noise has a Gaussian distribution.

p(t|x,w) = N (t|µ(x), σ2(x))

2. We can generalize the linear regression to binary classification by making two changes:

First, replacing the Gaussian distribution for t with Bernoulli distribution, which is more appropriate

for classification.

p(tn|xn,w) = Ber(tn|yn) =
{
yn if tn = 1

1− yn if tn = 0

where µ(xn) = E [tn|xn] = p(tn = 1|xn).
This is equivalent to

p(tn|xn,w) = Ber(tn|µ(xn)) = µ(xn)
tn (1− µ(xn))

(1−tn)

Second, compute a linear combination of the inputs and then we pass this through a function that

ensures 0 ≤ µ(x) ≤ 1 by defining

µ(x) = σ(w⊤x)
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MLE formulation of Logistic regression (cont.)

1. Putting these two steps together and dropping index n, we obtain

p(t|x,w) = Ber(t|σ(w⊤x)).

2. This is called logistic regression due to its similarity to linear regression.

3. If we threshold the output probability at 1
2
, we can introduce a decision rule of the form

if p(t = 1|x) > 0.5 ⇐⇒ h(x) = 1.

4. Logistic regression learns weights so as to maximize the (log-)likelihood of the data.

5. Let S = {(x1, t1), (x2, t2), . . . , (xN , tN)} be the training set. The negative log-likelihood of data

equals

L(w) = − ln
N∏

n=1

y tn
n (1− yn)

(1−tn)

= −
N∑

n=1

tn ln yn + (1− tn) ln(1− yn)

This is called the cross-entropy error function.
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MAP formulation of Logistic regression



MAP formulation for Logistic regression

1. Maximum likelihood estimate of w can lead to overfitting when data set is linearly separable. A

solution is to use a prior on w.

2. This can be avoided by inclusion of a prior and finding a MAP solution or equivalently by adding a

regularization term to the error function.

3. Same as linear regression, we consider a Gaussian prior on w

p(w) = N (0, σ2
0 ID).

4. ID denotes the D × D identity matrix. This is equivalent to assume that the prior selects each

component of W independently from a N (0, σ2
0). This prior can be written as

p(w) =
1

(2π)D/2σD
0

exp

{
− 1

2σ2
0

||w||22
}
.
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MAP formulation for Logistic regression

1. Assume that noise precision is known, The posterior density of w given set S and solving the

equation gives the form

L(w) =
N∑

n=1

log
[
1 + exp(−tnw

⊤xn)
]
+

λ

2
∥w∥2

2. Thus MAP estimation is equivalent to regularized logistic regression.

3. Using the gradient descent rule, will result in the following updating rule.

w(k+1) = w(k) − η
N∑

n=1

tnxn(yn − tn)− λw(k)
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Connection with Bayes

1. Bayes classifier for two classes +1 and −1

p(+1|x) =
P(x|+ 1)P(+1)

P(x)
=

P(x|+ 1)P(+1)

p(x|+ 1)p(+1) + p(x| − 1)p(−1)

=
1

1 + p(x|−1)p(−1)
P(x|+1)P(+1)

=
1

1 + exp(−a)
= σ(a)

a = ln
P(x|+ 1)P(+1)

P(x| − 1)P(−1)

where σ(z) refers to Sigmoid function.
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Connection with Bayes

1. Let the class conditional densities be D−dimensional Gaussian (for k ∈ {−1,+1})

p(x|k) = N (µ,Σ) =
1

|Σ|D/2(2π)D/2
exp

(
−1

2
(x− µk)

⊤Σ−1(x− µk)

)
2. Hence a equals to

a = ln
P(x|+ 1)P(+1)

P(x| − 1)P(−1)

= ln
exp

(
− 1

2
(x− µ1)

⊤Σ−1(x− µ1)
)

exp
(
− 1

2
(x− µ2)⊤Σ−1(x− µ2)

) P(+1)

P(−1)
.

3. Hence, we have

P(+1|x) = σ
(
w⊤x+ w0

)
where

w = Σ−1(µ1 − µ2)

w0 = −1

2
µ⊤
1 Σ

−1µ1 +
1

2
µ⊤
2 Σ

−1µ2 + ln
P(+1)

P(−1)

or simply

P(+1|x) = σ
(
w′⊤x

)
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Connection with Bayes

1. We compute a linear combination of the inputs but then we pass through a function that ensures

0 ≤ yn ≤ 1 by defining.

yn = σ(w⊤x) ≜
1

1 + exp(−w⊤x)
.

2. Finding w directly, we need to find D parameters.

3. Finding P(k|x) via probabilistic modeling of data using Gaussian distribution and MLE, we need

2D parameters for mean
D(D+1)

2
parameters for shared covariance matrix

One parameter for P(+1)

resulting D(D+5)
2

+ 1 parameters.
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Connection with Bayes

1. Logistic regression is a model for probabilistic classification.

2. It predicts label probabilities rather than a hard value of the label.

3. Let

yn = P(+1|xn)

1− yn = P(−1|xn)

4. The output of Logistic regression is a probability defined using the Sigmoid function

P(+1|xn) = yn = σ
(
w⊤xn

)
=

1

1 + exp(−w⊤xn)

5. The log of the ratio of probabilities ln P(+1|xn)
P(−1|xn) for the two classes, also known as the log odds

equals to

ln
P(+1|xn)
P(−1|xn)

= ln exp
(
w⊤xn

)
= w⊤xn

6. Thus if w⊤xn > 0, the probable class is +1.
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Multiclass classification



Multiclass classification

1. Targets form a discrete set {1, . . . ,K}.

2. We represent them as one-hot vectors t = {0, . . . , 0, 1, 0, . . . , 0}︸ ︷︷ ︸
entry k is 1

.

3. There are D input dimensions and K output dimensions.

4. We need K × D weights, arranged as a weight matrix W and a K -dimensional vector w0.

5. Linear predictions

zk =
∑
j

wkjxj + w0k

and vectorized as

z = Wx+ w0

6. The probability that the sample belong to class k equals to

p(k|x) = ezk∑
j e

zj

7. If one of the zk ’s is much larger than the others, then softmax(z) is approximately the argmax. So

really it’s more like soft-argmax.
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Reading



Readings

1. Sections 4.3.2 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Chapter 8 of Machine Learning: A probabilistic perspective (Murphy 2012).

3. Chapter 10 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?
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