
Machine learning

Linear & nonlinear classifiers

Hamid Beigy

Sharif University of Technology

April 16, 2023

Table of contents

1. Introduction

2. Linear classifiers

3. Perceptron algorithm

4. Support vector machines

5. Lagrangian optimization

6. Support vector machines (cont.)

7. Non-linear support vector machine

8. Linear discriminant analysis

9. Reading

1 / 47

Introduction

Introduction

1. In classification, the goal is to find a mapping from inputs X to outputs t ∈ {1, 2, . . . ,C} given a

labeled set of input-output pairs (training set)

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}.

2. Each training input x is a D−dimensional vector of numbers.

3. Approaches for building a classifier.

Generative approach: This approach first creates a joint model of the form of p(x, cn) and then to

condition on x, then deriving p(cn|x).
Discriminative approach: This approach creates a model of the form of p(cn|x) directly.

2 / 47

Linear classifiers

Linear classifiers

1. A linear classifier is defined as

g(xn) = ϕ (w1xn1 + w2xn2 + . . .+ wDxnD + b) = ϕ (⟨w, x⟩+ b) ∈ {−1,+1}

90 Linear Predictors

let w′ = (b,w1,w2, . . .wd) ∈ Rd+1 and let x′ = (1,x1,x2, . . . ,xd) ∈ Rd+1. Therefore,

hw,b(x) = ⟨w,x⟩+ b = ⟨w′,x′⟩.

It follows that each affine function in Rd can be rewritten as a homogenous linear
function in Rd+1 applied over the transformation that appends the constant 1 to
each input vector. Therefore, whenever it simplifies the presentation, we will omit
the bias term and refer to Ld as the class of homogenous linear functions of the form
hw(x) = ⟨w,x⟩.

Throughout the book we often use the general term “linear functions” for both
affine functions and (homogenous) linear functions.

9.1 HALFSPACES

The first hypothesis class we consider is the class of halfspaces, designed for binary
classification problems, namely, X = Rd and Y = {− 1,+1}. The class of halfspaces is
defined as follows:

H Sd = sign ◦ Ld = {x'→ sign(hw,b(x)) : hw,b ∈ Ld}.

In other words, each halfspace hypothesis in H Sd is parameterized by w ∈ Rd and
b ∈ R and upon receiving a vector xthe hypothesis returns the label sign(⟨w,x⟩+ b).

To illustrate this hypothesis class geometrically, it is instructive to consider the
case d = 2. Each hypothesis forms a hyperplane that is perpendicular to the vector
w and intersects the vertical axis at the point (0,− b/w2). The instances that are
“above” the hyperplane, that is, share an acute angle with w, are labeled positively.
Instances that are “below” the hyperplane, that is, share an obtuse angle with w, are
labeled negatively.

w

−

+

−

+

In Section 9.1.3 we will show that VCdim(H Sd) = d + 1. It follows that we
can learn halfspaces using the ERM paradigm, as long as the sample size is
!

(
d+log(1/δ)

ϵ

)
. Therefore, we now discuss how to implement an ERM procedure

for halfspaces.
We introduce in the following two solutions to finding an ERM halfspace in the

realizable case. In the context of halfspaces, the realizable case is often referred to
as the “separable” case, since it is possible to separate with a hyperplane all the
positive examples from all the negative examples. Implementing the ERM rule in
the nonseparable case (i.e., the agnostic case) is known to be computationally hard
(Ben-David and Simon, 2001). There are several approaches to learning nonsepa-
rable data. The most popular one is to use surrogate loss functions, namely, to learn
a halfspace that does not necessarily minimize the empirical risk with the 0− 1 loss,
but rather with respect to a diffferent loss function. For example, in Section 9.3 we

2. This classifier changes its prediction only when the argument to the sign function changes from

positive to negative (or vice versa).

3. Geometrically, this transition in the feature space corresponds to crossing the decision boundary

where the argument is exactly zero: all x such that w⊤x = 0.

4. Considering the above two dimensional data, x = (x1, x2), the hyperplane intersects the horizontal

axis at − b
w1

and the vertical axis at − b
w2
.

5. Instances that are above the hyperplane (share an acute angle with w) are labeled positively and

instances that are below the hyperplane (share an obtuse angle with w) are labeled negatively.

3 / 47

Linear programming

1. Linear programs are problems that can be expressed as maximizing a linear function subject to

linear inequalities. That is

max
w∈RD

⟨u,w⟩

subject to Aw ≥ v.

where

w ∈ RD is the vector of variables we wish to determine.

A is an N × D matrix.

v ∈ RN and u ∈ RD are vectors.

2. Linear programs can be solved efficiently.

4 / 47

Linear programming for designing linear classifiers

1. Suppose that the training data is linearly separable.

2. We are interested to find w and b that results in zero training error.

3. Let w = (b,w1,w2, . . . ,wD) and x = (1, x1, . . . , xd).

4. Hence, we are looking for w ∈ RD+1 such that for all i

sign(⟨w, xi ⟩) = ti

5. Equivalently, we are looking for w ∈ RD+1 such that for all i

ti ⟨w, xi ⟩ > 0.

6. Let w∗ be a vector that satisfies this condition.

7. Define γ = mini (ti ⟨w∗, xi ⟩) and let w̄ = w∗

γ
. Therefore, for all i we have

ti ⟨w̄, xi ⟩ =
1

γ
ti ⟨w∗, xi ⟩ ≥ 1.

8. We have thus shown that there exists a vector that for all i satisfies

ti ⟨w̄, xi ⟩ > 1.

5 / 47

Linear programming for designing linear classifiers

1. We have thus shown that there exists a vector that for all i satisfies

ti ⟨w̄, xi ⟩ > 1.

2. To find a vector that satisfies the above inequality,

Set A to be N × D matrix whose rows are the instances multiplied by ti Aij = ti × xij ,.

Set v to be (1, 1, . . . , 1) ∈ RN .

3. Then the above inequality becomes

Aw̄ > v.

4. The LP form requires a maximization objective, thus, we set a dummy objective,

u = (0, . . . , 0) ∈ RD .

6 / 47

Perceptron algorithm

The Perceptron algorithm

1. We would like to find a linear classifier that makes the fewest mistakes on the training set. In

other words, we want find w that minimizes the training error

EE (w) =
1

N

N∑
n=1

(1− δ(tn, g(xn)))

=
1

N

N∑
n=1

ℓ (tn, g(xn)) .

δ(t, t′) = 1 if t = t′ and 0 otherwise. ℓ is loss function called zero–one loss.

2. What would be a reasonable algorithm for setting the parameters w?

3. We can just incrementally adjust the parameters so as to correct any mistakes that the

corresponding classifier makes. Such an algorithm would seem to reduce the training error that

counts the mistakes. A simple algorithm of this type is the Perceptron update rule.

4. We consider each training instances one by one, cycling through all the training instances, and

adjust the parameters according to (drive it.)

w′ = w + tnxn if tn ̸= g(xn)

5. In other words, the parameters (classifier) is changed only if we make a mistake. These updates

tend to correct mistakes.

7 / 47

The Perceptron algorithm (cont.)

1. The parameters (classifier) is changed only if we make a mistake. To see this,

When we make a mistake sign(w⊤xk) ̸= tk .

The inequality tkw
⊤xk < 0 is hold.

Consider w after updating

tnw
′⊤xn = tn (w + tnxn)

⊤ xn

= tnw
⊤xn + t2nx

⊤
n xn

= tnw
⊤xn + ∥xn∥2

This means that, the value of tkw
⊤xn increases as a result of the update (becomes more positive).

If we consider the same feature vector repeatedly, then we will necessarily change the parameters such

that the vector is classified correctly, i.e., the value of tkw
⊤xn becomes positive.

2. if the training examples are possible to classify correctly with a linear classifier, will the Perceptron

algorithm find such a classifier?

3. Yes, it does, and it will converge to such a classifier in a finite number of updates (mistakes). To

drive this result (an alternative proof), please read section 3.3 of Pattern Recognition Book by

Theodoridis and Koutroumbas

8 / 47

The Perceptron algorithm (cont.)

1. We considered the linearly separable case in which the following inequality holds (Let b = 0).

tn(w
∗)⊤xn > 0 for all n = 1, 2, . . . ,N

w∗ is the weight learned by the Perceptron algorithm.

2. Now assume we want to learn a hyperplane that classifies the training set with margin of γ > 0,

i.e. we have

tn(w
∗)⊤xn > γ for all n = 1, 2, . . . ,N

Parameter γ > 0 is used to ensure all examples are classified correctly with a finite margin.

Theorem

When ∥xn∥ ≤ R for all n and some finite R, the Perceptron algorithm needs at most
(

R
γ

)2
∥w∗∥2

updates of the weight vector (w).

Outline of proof.

The convergence proof is based on combining the following two results,

2.1 The inner product (w∗)⊤w(k) increases at least linearly with each update.

2.2 The squared norm
∥∥w(k)

∥∥2 increases at most linearly in the number of updates k.

9 / 47

The Perceptron algorithm (cont.)

We now give details of each part.

Proof of part 1.

1. The weight vector w updated when the training instance is not classified correctly. We consider

the inner product (w∗)⊤w(k) before and after each update.

(w∗)⊤w(k) = (w∗)⊤
(
w(k−1) + tnxn

)
= (w∗)⊤w(k−1) + tn(w

∗)⊤xn

≥ (w∗)⊤w(k−1) + γ

≥ (w∗)⊤w(k−2) + 2γ

≥ (w∗)⊤w(k−3) + 3γ

...

≥ (w∗)⊤w(0) + kγ

= kγ

10 / 47

The Perceptron algorithm (cont.)

We now give details of part 2.

Proof of part 2.

1. The weight vector w updated when the training instance is not classified correctly. We consider∥∥∥w(k)
∥∥∥2 before and after each update.∥∥∥w(k)

∥∥∥2 = ∥∥∥w(k−1) + tnxn
∥∥∥2

=
∥∥∥w(k−1)

∥∥∥2 + 2tn
(
w(k−1)

)⊤
xn + ∥tnxn∥2

=
∥∥∥w(k−1)

∥∥∥2 + 2tn
(
w(k−1)

)⊤
xn + ∥xn∥2

≤
∥∥∥w(k−1)

∥∥∥2 + ∥xn∥2

≤
∥∥∥w(k−1)

∥∥∥2 + R2

≤
∥∥∥w(k−2)

∥∥∥2 + 2R2

...

≤
∥∥∥w(0)

∥∥∥2 + kR2 = kR2

11 / 47

The Perceptron algorithm (cont.)

We now combine two parts.

Combination of parts 1 & 2.

1. The cos(x, y) measures the similarity of x and y.

cos
(
w∗,w(k)

)
=

(w∗)⊤w(k)

∥(w∗)⊤∥ ∥w(k)∥
1

≥ kγ

∥(w∗)⊤∥ ∥w(k)∥
2

≥ kγ√
kR2 ∥(w∗)⊤∥

≤ 1.

2. The last inequality is because the cos is bounded by one. Hence, we have

k ≤
√
kR2

∥∥(w∗)⊤
∥∥

γ

≤
(
R

γ

)2 ∥∥∥(w∗)⊤
∥∥∥2 = R2

(
∥w∗∥
γ

)2

12 / 47

The Perceptron algorithm: margin and geometry

1. Does
∥w∗∥

γ
relate to the difficulty of the classification problem?

2. Yes, its inverse (γ
∥w∗∥) is the smallest distance in the feature space from any example to the

decision boundary specified by w∗. In other words, it is a measure of separation of two classes.

This distance is called geometric distance and denoted by γgeom.

3. To calculate the geometric distance, the distance from the decision boundary to one of the

examples xn for which tn(w
∗)⊤xn = γ is measured.

4. Since w∗ is normal to the decision boundary, the shortest path from the boundary to the instance

xn will be parallel to the normal.

5. The instance for which tn(w
∗)⊤xn = γ is therefore among those closest to the boundary.

13 / 47

The Perceptron algorithm: margin and geometry

1. Let x be an arbitrary point and let x⊥ be its orthogonal projection onto the decision surface.

2. Let r be the distance between x and x⊥. If g(x) = +1, we have

x− x⊥ = r
w∗

∥w∗∥

If g(x) = −1, we have

x− x⊥ = −r
w∗

∥w∗∥

14 / 47

The Perceptron algorithm: margin and geometry

1. Hence, by combining the two last equations we obtain

x = x⊥ + r
tw∗

∥w∗∥

x⊥ = x− r
tw∗

∥w∗∥

2. It remains to find the value of r such that (w∗)⊤x⊥ = 0. This is the point where the segment hits

the decision boundary. Thus, we have

0 = t(w∗)⊤x⊥ = t(w∗)⊤
[
x− r

tw∗

∥w∗∥

]
= t(w∗)⊤x− r

t2(w∗)⊤w∗

∥w∗∥

= t(w∗)⊤x︸ ︷︷ ︸
γ

−r
∥w∗∥2

∥w∗∥

3. Hence, we obtain

0 = γ − r ∥w∗∥

r =
γ

∥w∗∥

15 / 47

The Perceptron algorithm: margin and geometry

1. Hence, the number of updates for w is equal to

k ≤
(

R

γgeom

)2

2. Note that the result does not depend (directly) on the dimension (D) of the examples, nor the

number of training examples (N). The value of γgeom can be interpreted as a measure of difficulty

(or complexity) of the problem of learning linear classifiers in this setting.

3. There are other variants of perceptron algorithm such as normalized perceptron algorithm and

Pocket algorithm. please study them.

16 / 47

Large margin classifier

1. We have assumed that there exists a linear classifier that has a large geometric margin.This type

of classifier is called large margin classifier.

2. We have so far used a simple iterative algorithm (Perceptron algorithm) to find the linear classifier.

3. Can we find a large margin classifier directly?

4. Yes, we can find the large margin classifier directly.

5. This classifier is known as the support vector machine (SVM).

17 / 47

Support vector machines

Support vector machines

1. Consider the problem of finding a separating hyperplane for a linearly separable dataset

S = {(x1, t1), (x2, t2), . . . , (xN , tN)} with xi ∈ RD and ti ∈ {−1,+1}.

2. Which of the infinite hyperplanes should we choose?

Hyperplanes that pass too close to the training examples will be sensitive to noise and therefore, less

likely to generalize well for data outside the training set.

It is reasonable to expect that a hyperplane that is farthest from all training examples will have better

generalization capabilities.

3. We can find the maximum margin linear classifier by first identifying a classifier that correctly

classifies all the examples and then increasing the geometric margin until we cannot increase the

margin any further.

4. We can also set up an optimization problem for directly maximizing the geometric margin.

18 / 47

Support vector machines (cont.)

1. We will need the classifier to be correct on all the training examples (tnw
⊤xn ≥ γ for all

n = 1, 2, . . . ,N) subject to these constraints, we would like to maximize the geometric margin

(γ
∥w∥). Hence, we have (Let b = 0)

Maximize
γ

∥w∥ subject to tnw
⊤xn ≥ γ for all n = 1, 2, . . . ,N

2. We can alternatively minimize the inverse ∥w∥
γ

or the inverse squared ∥w∥2
γ2 subject to the same

constraints.

Minimize
1

2

∥w∥2

γ2
subject to tnw

⊤xn ≥ γ for all n = 1, 2, . . . ,N

Factor 1
2
is included merely for later convenience.

3. The above problem can be written as

Minimize
1

2

∥∥∥∥wγ
∥∥∥∥2 subject to tn

(
w
γ

)⊤
xn ≥ 1 for all n = 1, 2, . . . ,N

4. This problem tells the dependency on the ratio w
γ
not w or γ separately.

5. Scaling w by a constant also doesn’t change the decision boundary. We can therefore fix γ = 1

and solve for w.

19 / 47

Support vector machines (cont.)

1. By fixing γ = 1 and solving for w, we obtain

Minimize
1

2
∥w∥2 subject to tnw

⊤xn ≥ 1 for all n = 1, 2, . . . ,N

2. This optimization problem is in the standard SVM form and is a quadratic programming problem.

3. We will modify the linear classifier here slightly by adding an offset term so that the decision

boundary does not have to go through the origin. In other words, the classifier that we consider

has the form

g(x) = w⊤x+ b

w is the weight vector b is the bias of the separating hyperplane. The hyperplane is shown by

(w, b).

4. The bias parameter changes the optimization problem to

Minimize
1

2
∥w∥2 subject to tn

(
w⊤xn + b

)
≥ 1 for all n = 1, 2, . . . ,N

5. Note that the bias only appears in the constraints. This is different from simply modifying the

linear classifier through origin by feeding it with examples that have an additional constant

component, i.e., x′ = [1; x].

20 / 47

Lagrangian optimization

Lagrangian optimization

1. Assume that we have a primal optimization problem of the form,

min
x
ϕ(x) subject to gi (x) ≥ 0 for i = 1, 2, . . . , l

2. Assume that ϕ is convex and the constraints gi are linear.

3. We can construct the Lagrangian optimization problem as follows,

max
α

min
x

L(x, α) = max
α

min
x

(
ϕ(x)−

l∑
i=1

αigi (x)

)

such that

αi ≥ 0 for i = 1, 2, . . . , l

4. The values α1, . . . , αl are called the Lagrangian multipliers.

5. We call x the primal variable and α the dual variable.

21 / 47

Lagrangian optimization (cont.)

1. We have

max
α

min
x

L(x, α) = max
α

min
x

(
ϕ(x)−

l∑
i=1

αigi (x)

)

2. Let x = x∗ be an optimum then

max
α

L(x∗, α) = max
α

(
ϕ(x∗)−

l∑
i=1

αigi (x
∗)

)

3. Let α = α∗ be an optimum then

min
x

L(x, α∗) = min
x

(
ϕ(x)−

l∑
i=1

α∗
i gi (x)

)

4. This implies that our solutions are saddle points on the graph of the function L(x, α)

5. An important observation is that at the saddle point the identity

∂L

∂x
= 0

6. Here, the point x∗ represents an optimum of L with respect to x.

22 / 47

Lagrangian optimization (cont.)

1. Let α∗ and x∗ be a solution to the Lagrangian such that,

max
α

min
x

L(x, α) = L(x∗, α∗) = ϕ(x∗)−
l∑

i=1

α∗
i gi (x

∗)

2. Then x∗ is a solution to the primal objective function if and only if the following conditions hold

∂

∂x
L(x∗, α∗) = 0,

α∗
i gi (x

∗) = 0,

gi (x
∗) ≥ 0,

α∗
i ≥ 0,

for i = 1, 2, . . . , l .

3. These conditions are collectively referred to as the Karush-Kuhn-Tucker (KKT) conditions and if

satisfied ensure that (Why? Please verify it.)

L(x∗, α∗) = ϕ(x∗)

4. The KKT conditions are always satisfied for convex optimization problems.

23 / 47

Lagrangian optimization (cont.)

1. Assume that x∗ be an optimum, that is,

∂

∂x
L(x∗, α) = 0,

2. Then we can rewrite our Lagrangian as an objective function of only the dual variable,

L(x∗, α) = ψ(α),

the function ψ the Lagrangian dual.

3. This gives us our new, dual optimization problem

max
α
ψ(α) subject to αi ≥ 0 for i = 1, 2, . . . , l

4. If the KKT conditions are satisfied

max
α
ψ(α) = ψ(α∗) = L(α∗, x∗) = ϕ(x∗).

24 / 47

Lagrangian optimization (Example)

1. Consider the convex optimization problem,

min
x
ϕ(α) = min

x

1

2
x2 subject to g(x) = x − 2 ≥ 0

An Example
Consider the convex optimization problem,

min φ(x) = min
1

2
x
2
,

subject to the linear constraint

g(x) = x − 2 ≥ 0,

with x ∈ R.

– p. 9/1

2. The Lagrangian is

L(x , α) =
1

2
x2 − α(x − 2).

3. This saddle point occurs where the gradient of the Lagrangian with respect to x is equal to zero,

∂L

∂x
(α, x∗) = x∗ − α = 0

4. Solving for x∗ gives x∗ = α. Now, substituting x∗ = α into the Lagrangian gives

L(α, x∗) =
1

2
α2 − α2 + 2α = 2α− 1

2
α2

25 / 47

Lagrangian optimization (Example)

1. We can write dual optimization form with ψ(α) = L(α, x∗) as

max
α
ψ(α) = max

α

(
2α− 1

2
α2

)
subject to α ≥ 0

2. Since L(x , α) is convex, we can write

∂ψ

∂α
(α∗) = 2− α = 0

3. This means that x∗ = α∗ = 2.

26 / 47

Support vector machines (cont.)

Support vector machines (cont.)

1. The optimization problem for SVM is defined as

Minimize
1

2
∥w∥2 subject to tn

(
w⊤xn + b

)
≥ 1 for all n = 1, 2, . . . ,N

2. In order to solve this constrained optimization problem, we introduce Lagrange multipliers αn ≥ 0,

with one multiplier αn for each of the constraints giving the Lagrangian function

L(w, b, α) =
1

2
∥w∥2 −

N∑
n=1

αn

[
tn
(
w⊤xn + b

)
− 1
]

where α = (α1, α2, . . . , αN)
⊤.

3. Note the minus sign in front of the Lagrange multiplier term, because we are minimizing with

respect to w and b, and maximizing with respect to α. please read Appendix E of Bishop.

4. Setting the derivatives of L(w, b, α) with respect to w and b equal to zero, we obtain the

following two equations

∂L

∂w
= 0⇒ w =

N∑
n=1

αntnxn

∂L

∂b
= 0⇒ 0 =

N∑
n=1

αntn

27 / 47

Support vector machines (cont.)

1. L has to be minimized with respect to the primal variables w and b and maximized with respect

to the dual variables αn. Eliminating w and b from L(w, b, a) using these conditions then gives

the dual representation of the problem in which we maximize

ψ(α) =
N∑

n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmtntmx
⊤
n xm

2. We need to maximize ψ(α) subject to the following constraints

αn ≥ 0 ∀n
N∑

n=1

αntn = 0

3. The constrained optimization of this form satisfies the Karush-Kuhn-Tucker (KKT) conditions,

which in this case require that the following three properties hold

αn ≥ 0

tng(xn) ≥ 1

αn [tng(xn)− 1] = 0

28 / 47

Support vector machines (cont.)

1. For optimal αn’s,

αn

[
1− tn

(
w⊤xn + b

)]
= 0

2. αn is non-zero only if xn lies on one of the two margin boundaries, i.e., for which tn(w
⊤xn + b) = 1

3. These examples are called support vectors.

4. To classify a data x using the trained model, we evaluate the sign of g(x) defined by

g(x) =
N∑

n=1

αntnx
⊤
n x

5. How do you find b?

29 / 47

Support vector machines (cont.)

1. We have assumed that the training data are linearly separable in the feature space. The resulting

SVM will give exact separation of the training data.

2. In the practice, the class-conditional distributions may overlap, in which the exact separation of

the training data can lead to poor generalization.

3. We need a way to modify the SVM so as to allow some training examples to be miss-classified.

4. To do this, we introduce slack variables (ξn ≥ 0) (distance by which it violates the margin); one

slack variable for each training example.

5. The slack variables are defined by ξn = 0 for examples that are inside the correct boundary margin

and ξn = |tn − g(xn)| for other examples.

6. Thus for data point that is on the decision boundary g(xn) = 0 will have ξn = 1 and the data

points with ξn ≥ 1 will be misclassified.

30 / 47

Support vector machines (cont.)

1. The exact classification constraints will be

tng(xn) ≥ 1− ξn for n = 1, 2, . . . ,N

2. Our goal is now to maximize the margin while softly penalizing points that lie on the wrong side

of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1

2
∥w∥2

C > 0 controls the trade-off between the slack variable penalty and the margin.

3. We now wish to solve the following optimization problem.

Minimize
1

2
∥w∥2 + C

N∑
n=1

ξn subject to tng(xn) ≥ 1− ξn for all n = 1, 2, . . . ,N

4. The corresponding Lagrangian is given

L(w , b, α) =
1

2
∥w∥2 + C

N∑
n=1

ξn −
N∑

n=1

αn [tng(xn)− 1 + ξn]−
N∑

n=1

βnξn

where αn ≥ 0 and βn ≥ 0 are Lagrange multipliers.

5. please read section 7.1.1 of Bishop.

31 / 47

Non-linear support vector machine

Non-linear support vector machine

1. Most data sets are not linearly separable, for example

2. Instances that are not linearly separable in 1−dimension, may be linearly separable in 2−
dimensions, for example

3. In this case, we have two solutions

Increase dimensionality of data set by introducing mapping ϕ.

Use a more complex model for classifier.

32 / 47

Non-linear support vector machine (cont.)

1. To solve the non-linearly separable dataset, we use mapping ϕ.

2. For example, let x = (x1, x2)
⊤, z = (z1, z2.z3)

⊤, and ϕ : R2 → R3. If we use mapping

z = ϕ(x) = (x2
1 ,
√
2x1x2, x

2
2)

⊤, the dataset will be linearly separable in R3.

3. Mapping dataset to higher dimensions has two major problems.

In high dimensions, there is risk of over-fitting.

In high dimensions, we have more computational cost.

4. The generalization capability in higher dimension is ensured by using large margin classifiers.

5. The mapping is an implicit mapping not explicit.

33 / 47

Non-linear support vector machine (cont.)

1. The SVM uses the following discriminant function.

g(x) =
N∑

n=1

αntnx
⊤
n x

2. This solution depends on the dot-product between two pints xn and x .

3. The operation in high dimensional space ϕ(x) don’t have performed explicitly if we can find a

function K(xi , xj) such that K(xi , xj) = ϕ(xi)
⊤ϕ(xj).

4. K(xi , xj) is called kernel in the SVM.

5. Suppose x , z ∈ RD and consider the following kernel

K(x , z) =
(
x⊤z

)2
6. It is a valid kernel because

K(x , z) =

(
D∑
i=1

xizi

)(
D∑
j=1

xjzj

)

=
D∑
i=1

D∑
j=1

(xixj) (zizj) = ϕ(x)⊤ϕ(z)

where the mapping ϕ for D = 2 is

ϕ(x) = (x1x1, x1x2, x2x1, x2x2)
⊤

34 / 47

Non-linear support vector machine (cont.)

1. Show that kernel K(x , z) = (x⊤z + c)2 is a valid kernel.

2. A kernel K is valid if there is some mapping ϕ such that K(x , z) = ϕ(x)⊤ϕ(z).

3. Assume that K is a valid kernel. Consider a set of N points, K is N × N square matrix defined as

K =


k(x1, x1) k(x1, x2) · · · k(x1, xN)

k(x2, x1) k(x2, x2) · · · k(x2, xN)
...

...
. . .

...

k(xN , x1) k(xN , x2) · · · k(xN , xN)


K is called kernel matrix.

4. If K is a valid kernel then

kij = k(xi , xj) = ϕ(xi)
⊤ϕ(xj) = ϕ(xj)

⊤ϕ(xi) = k(xj , xi) = kji

5. Thus K is symmetric. It can also be shown that K is positive semi-definite (show it.).

6. Thus if K is a valid kernel, then the corresponding kernel matrix is symmetric positive

semi-definite. It is both necessary and sufficient conditions for K to be a valid kernel.

35 / 47

Non-linear support vector machine (cont.)

Theorem (Mercer)

Assume that K : RD × RD → R. Then for K to be a valid (Mercer) kernel, it is necessary and

sufficient that for any {x1, x2, . . . , xN}, (N > 1) the corresponding kernel matrix is symmetric positive

semi-definite.

1. Some valid kernel functions

Polynomial kernels

K(x , z) = (x⊤z + 1)p

p is the degree of the polynomial and specified by the user.

Radial basis function kernels

K(x , z) = exp

(
−
∥x − z∥2

2σ2

)
The width σ is specified by the user. This kernel corresponds to an infinite dimensional mapping ϕ .

Sigmoid Kernel

K(x , z) = tanh
(
β0x

⊤z + β1

)
This kernel only meets Mercer’s condition for certain values of β0 and β1.

36 / 47

Advantages and disadvantages of SVM

1. Advantages

The problem doesn’t have local minima and we can found its optimal solution in polynomial time.

The solution is stable, repeatable, and sparse (it only involves the support vectors).

The user must select a few parameters such as the penalty term C and the kernel function and its

parameters.

The algorithm provides a method to control complexity independently of dimensionality.

SVMs have been shown (theoretically and empirically) to have excellent generalization capabilities.

2. Disadvantages

There is no method for choosing the kernel function and its parameters.

It is not a straight forward method to extend SVM to multi-class classifiers.

Predictions from a SVM are not probabilistic.

It has high algorithmic complexity and needs extensive memory to be used in large-scale tasks.

37 / 47

Linear discriminant analysis

Linear discriminant analysis (LDA)

1. One way to view a linear classification model is in terms of dimensionality reduction.

2. Consider a two-class problem and suppose we take a D−dimensional input vector x and project it

down to one dimension using

z = W⊤x

3. If we place a threshold on z and classify z ≥ −w0 as class C1, and otherwise class C2, then we

obtain our standard linear classifier.

4. In general, the projection onto one dimension leads to a considerable loss of information, and

classes that are well separated in the original D−dimensional space may become strongly

overlapping in one dimension.

38 / 47

Linear discriminant analysis (cont.)

1. However, by adjusting the components of the weight vector W , we can select a projection that

maximizes the class separation.

2. Consider a two-class problem in which there are N1 points of class C1 and N2 points of class C2.

Hence the mean vectors of the class Cj is given by

mj =
1

Nj

∑
i∈Cj

xi

3. The simplest measure of the separation of the classes, when projected onto W , is the separation

of the projected class means.

4. This suggests that we might choose W so as to maximize

m2 −m1 = W⊤(m2 −m1)

where

mj = W⊤mj

5. This expression can be made arbitrarily large simply by increasing the magnitude of W .

6. To solve this problem, we could constrain W to have unit length, so that
∑

i w
2
i = 1.

7. Using a Lagrange multiplier to perform the constrained maximization, we then find that

W ∝ (m2 −m1)

39 / 47

Linear discriminant analysis (cont.)

1. This approach has a problem: The following figure shows two classes that are well separated in

the original two dimensional space but that have considerable overlap when projected onto the line

joining their means.
188 4. LINEAR MODELS FOR CLASSIFICATION

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)

2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

2. This difficulty arises from the strongly non-diagonal covariances of the class distributions.

3. The idea proposed by Fisher is to maximize a function that will give a large separation between

the projected class means while also giving a small variance within each class, thereby minimizing

the class overlap.

40 / 47

Linear discriminant analysis (cont.)

1. The idea proposed by Fisher is to maximize a function that will give a large separation between

the projected class means while also giving a small variance within each class, thereby minimizing

the class overlap.

2. The projection z = W⊤x transforms the set of labeled data points in x into a labeled set in the

one-dimensional space z .

3. The within-class variance of the transformed data from class Cj equals

s2j =
∑
i∈Cj

(zi −mj)
2

where

zi = w⊤xi .

4. We can define the total within-class variance for the whole data set to be s21 + s22 .

5. The Fisher criterion is defined to be the ratio of the between-class variance to the within-class

variance and is given by

J(W) =
(m2 −m1)

2

s21 + s22

41 / 47

Linear discriminant analysis (cont.)

1. Between-class covariance matrix equals to

SB = (m2 −m1)(m2 −m1)
⊤

2. Total within-class covariance matrix equals to

SW =
∑
i∈C1

(xi −m1) (xi −m1)
⊤ +

∑
i∈C2

(xi −m2) (xi −m2)
⊤

3. We have

(m1 −m2)
2 =

(
W⊤m1 −W⊤m2

)2
= W⊤ (m1 −m2)(m1 −m2)

⊤︸ ︷︷ ︸
SB

W

= W⊤SBW ,

42 / 47

Linear discriminant analysis (cont.)

1. Also we have

s21 =
∑
i

(
W⊤xi −m1

)2
=

∑
i

W⊤(xi −m1)(xi −m1)
2W

= W⊤

[∑
i

((xi −m1)(xi −m1)
2

]
︸ ︷︷ ︸

S1

W

= W⊤S1W ,

2. and SW = S1 + S2. Hence, J(W) can be written as

J(w) =
W⊤SBW

W⊤SWW

3. Derivative of J(W) with respect to W equals to (using ∂x⊤Ax
∂x

= (A+ A⊤)x)

∂J(W)

∂W
=

[
SB + S⊤

B

]
WW⊤SWW −

[
SW + S⊤

W

]
WW⊤SBW

(W⊤SWW)2

43 / 47

Linear discriminant analysis (cont.)

1. Since SB and SW are symmetric, we obtain

∂J(W)

∂W
=

[
SB + S⊤

B

]
WW⊤SWW −

[
SW + S⊤

W

]
WW⊤SBW

(W⊤SWW)2
= 0

⇒ [W⊤SWW]SBW = [W⊤SBW]SWW

2. Dividing by W⊤SWW [
W⊤SWW

W⊤SWW

]
SBW =

[
W⊤SBW

W⊤SWW

]
SWW

⇒ SBW = λSWW

3. If SW is invertible, we have

S−1
W SBW = λW

4. Solving the above generalized eigenvalue problem yields

W ∝ S−1
W (m2 −m1)

44 / 47

Linear discriminant analysis (cont.)

1. The result W ∝ S−1
W (m2 −m1) is known as Fisher’s linear discriminant.

2. Although strictly it is not a discriminant but rather a specific choice of direction for projection of

the data down to one dimension.

3. The above idea can be extended to multiple classes (Read section 4.1.6 of Bishop).

45 / 47

Reading

Readings

1. Sections 4.1 & 7.1 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Sections 8.5.4, 14.4, & 14.5 of Machine Learning: A probabilistic perspective (Murphy 2012).

3. Sections 10.2.5, 17.1, 17.2, & 17.5 of Probabilistic Machine Learning: An introduction (Murphy

2022).

46 / 47

References i

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag.

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

— (2022). Probabilistic Machine Learning: An introduction. The MIT Press.

47 / 47

Questions?

47 / 47

	Introduction
	Linear classifiers
	Perceptron algorithm
	Support vector machines
	Lagrangian optimization
	Support vector machines (cont.)
	Non-linear support vector machine
	Linear discriminant analysis
	Reading

