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Probability



Probability

1. Probability theory is the study of uncertainty.

2. Elements of probability

Sample space Ω is the set of all the outcomes of a random experiment.

Event space F is a set whose elements A ∈ F (called events) are subsets of Ω.

Probability measure is a function P : F 7→ [0, 1].

Experiment

Sample space

Outcome

Event

Probability Model
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Probability measure

Definition (Probability measure)

A probability measure on the sample space Ω is a function, denoted P, from subsets of Ω to

the real numbers R, such that the following hold:

P(A) ≥ 0, for all A ∈ F .

P(Ω) = 1.

If A1,A2, . . . are disjoint events (i.e.,Ai ∩ Aj = ∅ whenever i ̸= j),then

P(∪iAi ) =
∑

i

P(Ai )

Example (Tossing two coins)

In tossing two coins, we have

The sample space equals to Ω = {HH,HT ,TT ,TH}
An event space F that only one head is a subset of Ω such as F = {TH,HT}
The probabilities are P(TH) = 1

4 and P(HT ) = 3
4
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Properties of probability

1. If A ⊆ B =⇒ P(A) ≤ P(B).

2. P(A ∩ B) ≤ min(P(A),P(B)).

3. P(A ∪ B) ≤ P(A) + P(B). This property is called union bound.

4. P(Ω \ A) = 1− P(A).

5. If A1,A2, . . . ,Ak are disjoint events such that ∪k
i=1Ai = Ω,then

k∑

i=1

P(Ai ) = 1

This property is called law of total probability.
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Probability

Conditional probability and independence

1. Let B be an event with P(B) ≥ 0. The conditional probability of any event A given B is

P(A | B) = P(A ∩ B)

P(B)

In other words, P(A | B) is the probability measure of the event A after observing the

occurrence of event B.

2. Two events are called independent if and only if

P(A ∩ B) = P(A)P(B),

or equivalently, P(A | B) = P(A).

Therefore, independence is equivalent to saying that observing B does not have any effect

on the probability of A.
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What is probability?

Classical definition (Laplace, 1814). P(A) is the number of outcomes that are favorable to

A divided by the total number of outcomes.

P(A) =
NA

N

where N mutually exclusive equally likely outcomes, NA of which result in

the occurrence of A.

Frequentist definition. P(A) is the relative frequency of occurrence of A in infinite number of

trials as

P(A) = lim
N→∞

NA

N

Bayesian definition (de Finetti, 1930s). P(A) is a degree of belief.
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What is probability?

Example (Bayesian vs. Frequentist)

1. We have a coin with unknown probability θ of coming up heads.

2. We must determine this probability as accurately as possible using experimentation.

3. Experimentat is to repeatedly tossing the coin.

4. Let us denote two possible outcomes of a single toss by 1 (Heads) and 0 (Tails).

5. If we toss the coin m times, then we can record the outcomes as x1, . . . , xm, where each

xi ∈ {0, 1} and P[xi = 1] = θ independently of all other xi ’s.

6. What would be a reasonable estimate of θ?

7. In Frequentist view, by Law of Large Numbers, in a long sequence of independent coin

tosses, the relative frequency of heads will eventually approach the true value of θ with

high probability. Hence,

θ̂ =
1

m

∑

i

xi

8. In Bayesian view, θ is a random variable and has a distribution.
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Random variables

1. Consider an experiment with 10 coin flips, and we want to know the number of coins that

come up heads.

2. Here, the elements of the sample space Ω are 10-length sequences of heads and tails.

3. We usually do not care about the probability of any particular sequence of heads and tails.

4. Instead we usually care about real-valued functions of outcomes, such as

the number of heads that appear among our 10 tosses, or

the length of the longest run of tails.

5. These functions, under some technical conditions, are known as random variables.

6. More formally, a random variable X is a function X : Ω → R.
7. We denote random variables using upper case letters X (ω) or more simply X , where ω is

an event.

Sample space

Outcome

Event

8. We will denote the value that a random variable X may take on using lower case letter x . 8 / 33



Random variables

1. A random variable can be discrete or continuous.

2. A random variable is associated with a probability mass function or probability distribution.
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Discrete random variables

1. For a discrete random variable X , p(x) denotes the probability that p(X = x).

2. p(x) is called the probability mass function (PMF).

3. This function has the following properties:

p(x) ≥ 0

p(x) ≤ 1
∑

x

p(x) = 1
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Continuous random variables

1. For a continuous random variable X , a probability p(X = x) is meaningless.

2. Instead we use p(x) to denote the probability density function (PDF).

p(x) ≥ 0
∫

x

p(x) = 1

3. Probability that a continuous random variable X ∈ (x , x + δx) is p(x)δx as δx → 0.

xδx

p(x) P (x)

4. Probability that X ∈ (−∞, z) is given by cumulative distribution function (CDF) P(z)

P(z) = p(X ≤ z) =

∫ z

−∞
p(x)dx

p(x) = z

∣∣∣∣
dP(z)

dz

∣∣∣∣
z=x
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Joint probability

1. Two or more random variables may interact.

2. Thus, the probability of one taking on a certain value depends on which value(s) the

others are taking.

3. We write this as

p(x , y) = P(X = x ,Y = y).

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

• We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

• We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Bayes’ Rule

• Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∑
x′ p(y|x′)p(x′)

• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)
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Joint probability

1. Let nij be the number of times events xi and yj simultaneously occur.

}

}ci

rjyj

xi

nij

2. Let N =
∑

i

∑
j nij .

3. Joint probability is

p(X = xi ,Y = yj) =
nij
N

.

4. Let ci =
∑

j nij , and rj =
∑

i nij .

5. The probability of X irrespective of Y is

p(X = xi ) =
ci
N
.
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Conditional probability

1. If we know that some event has occurred, it changes our belief about the probability of

other events.

2. This is like taking a slice through the joint table.

3. We write this as

p(x |y) = p(x , y)

p(y)
.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

• We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

• We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Bayes’ Rule

• Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∑
x′ p(y|x′)p(x′)

• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)
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Marginal Probabilities

1. We can sum out part of a joint distribution to get the marginal distribution of a subset of

variables:

p(x) =
∑

y

p(x , y)

2. This is like adding slices of the table together.

Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

• We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)

x

y

z

p(x,y,z)

Marginal Probabilities

• We can ”sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.

x

y

z

x

y

zΣ
p(x,y)

• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)

x

y

z

p(x,y|z)

Bayes’ Rule

• Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∑
x′ p(y|x′)p(x′)

• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)

3. Another equivalent definition

p(x) =
∑

y

p(x |y)p(y)
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Independence & Conditional Independence

1. Two variables are independent iff their joint factors:

p(x , y) = p(x)p(y)

Independence & Conditional Independence

• Two variables are independent iff their joint factors:

p(x, y) = p(x)p(y)
p(x,y)

=
x

p(y)

p(x)

• Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x, y|z) = p(x|z)p(y|z) ∀z

Entropy

• Measures the amount of ambiguity or uncertainty in a distribution:

H(p) = −
∑

x

p(x) log p(x)

• Expected value of − log p(x) (a function which depends on p(x)!).

• H(p) > 0 unless only one possible outcomein which case H(p) = 0.

• Maximal value when p is uniform.

• Tells you the expected ”cost” if each event costs − log p(event)

Cross Entropy (KL Divergence)

• An assymetric measure of the distancebetween two distributions:

KL[p‖q] =
∑

x

p(x)[log p(x) − log q(x)]

• KL > 0 unless p = q then KL = 0

• Tells you the extra cost if events were generated by p(x) but
instead of charging under p(x) you charged under q(x).

Jensen’s Inequality

• For any concave function f () and any distribution on x,

E[f (x)] ≤ f (E[x])

f(E[x])

E[f(x)]

• e.g. log() and √ are concave

• This allows us to bound expressions like log p(x) = log
∑

z p(x, z)

2. Two variables are conditionally independent given a third one if for all values of the

conditioning variable, the resulting slice factors:

p(x , y |z) = p(x |z)p(y |z) ∀z
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Expected value

1. Expectation, expected value, or mean of a random variable X , denoted by E [X ], is the

average value of X in a large number of experiments.

E [X ] =
∑

x

xp(x)

E [X ] =

∫

x

xp(x)dx

2. The definition of Expectation also applies to functions of random variables (e.g., E [f (x)])

3. Linearity of expectation

E [αf (x) + βg(x)] = αE [f (x)] + β E [g(x)]

17 / 33



Variance and and Covariance

1. Variance (σ2) measures how much X varies around the expected value and is defined as.

Var(X ) = E
[
(X − E [X ])2

]
= E

[
X 2

]
− µ2

2. Standard deviation is defined as

std [X ] =
√
Var [X ] = σ

3. Covariance of two random variables X and Y indicates the relationship between two

random variables X and Y .

Cov(X ,Y ) = E
X ,Y

[
(X − E [X ])(Y − E [Y ])⊤

]
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Common probability distributions

We will use these probability distributions extensively to model data as well as parameters

Some discrete distributions and what they can model:

1. Bernoulli : Binary numbers, e.g., outcome (head/tail, 0/1) of a coin toss

2. Binomial : Bounded non-negative integers, e.g., the number of heads in n coin tosses

3. Multinomial : One of K(> 2) possibilities, e.g., outcome of a dice roll

4. Poisson : Non-negative integers, e.g., the number of words in a document

Some continuous distributions and what they can model:

1. Uniform: Numbers defined over a fixed range

2. Beta: Numbers between 0 and 1, e.g., probability of head for a biased coin

3. Gamma: Positive unbounded real numbers

4. Dirichlet : Vectors that sum of 1 (fraction of data points in different clusters)

5. Gaussian: Real-valued numbers or real-valued vectors
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Exponential family

1. For (continuous or discrete) random variable x

p(x |θ) = 1

Z (θ)
h(x)exp

[
θ⊤ϕ(x)

]

= h(x)exp
[
θ⊤ϕ(x)− A(θ)

]

where

Z (θ) =

∫

x

h(x)exp
[
θ⊤ϕ(x)

]
dx

A(θ) = logZ (θ)

is an exponential family distribution with natural parameter θ.

ϕ(x) is called a vector of sufficient statistics.

Z(θ) is called the partition function.

A(θ) is called the log partition function.

h(x) is the a scaling constant, often 1.
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Bernoulli distribution

1. For a binary random variable x ∈ {0, 1} with p(x = 1) = π, like a coin-toss outcome

Ber(x |π) = πx(1− π)1−x

= exp

{
log

(
π

1− π

)
+ log(1− π)

}

2. The expected value and the variance of X are equal to

E [X ] = π

Var(X ) = π(1− π)

3. The Bernoulli for x ∈ {0, 1} can be written in exponential family form as follows:

Ber(x |π) = πx(1− π)1−x

= exp[x log π + (1− x) log(1− π)]

= exp
[
θ⊤ϕ(x)

]

where

ϕ(x) = [I [x = 0] , I [x = 1]]

θ = [log π, log(1− π)]
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Binomial distribution

1. Suppose we toss a coin n times.

2. Let x ∈ {0, 1, . . . , n} be the number of heads.

3. If probability of heads is π, x has a binomial distribution, written as

Bin(k |n, π) =
(
n

k

)
πk(1− π)n−k

4. Binomial distribution for n = 10 and π = 0.252.3. Some common discrete distributions 35
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Figure 2.4 Illustration of the binomial distribution with n = 10 and θ ∈ {0.25, 0.9}. Figure generated
by binomDistPlot.

2.3.2 The multinomial and multinoulli distributions

The binomial distribution can be used to model the outcomes of coin tosses. To model the
outcomes of tossing a K-sided die, we can use the multinomial distribution. This is defined as
follows: let x = (x1, . . . , xK) be a random vector, where xj is the number of times side j of
the die occurs. Then x has the following pmf:

Mu(x|n, θ) !
(

n

x1 . . . xK

) K∏

j=1

θ
xj

j (2.33)

where θj is the probability that side j shows up, and
(

n

x1 . . . xK

)
! n!

x1!x2! · · · xK !
(2.34)

is the multinomial coe!cient (the number of ways to divide a set of size n =
∑K

k=1 xk into
subsets with sizes x1 up to xK ).

Now suppose n = 1. This is like rolling a K-sided dice once, so x will be a vector of 0s
and 1s (a bit vector), in which only one bit can be turned on. Specifically, if the dice shows
up as face k, then the k’th bit will be on. In this case, we can think of x as being a scalar
categorical random variable with K states (values), and x is its dummy encoding, that is,
x = [I(x = 1), . . . , I(x = K)]. For example, if K = 3, we encode the states 1, 2 and 3 as
(1, 0, 0), (0, 1, 0), and (0, 0, 1). This is also called a one-hot encoding, since we imagine that
only one of the K “wires” is “hot” or on. In this case, the pmf becomes

Mu(x|1, θ) =

K∏

j=1

θ
I(xj=1)
j (2.35)

See Figure 2.1(b-c) for an example. This very common special case is known as a categorical
or discrete distribution. (Gustavo Lacerda suggested we call it the multinoulli distribution, by
analogy with the Binomial/ Bernoulli distinction, a term which we shall adopt in this book.) We

5. The expected value and the variance of x are equal to

E [x ] = nπ

Var(x) = nπ(1− π)
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Multinomial distribution

1. For a categorical random variable taking K values, let πk be the probability of k th value.

2. Using a binary vector (x1, . . . , xK ) where xk = 1 iff the variable takes on its k th value.

3. Now we can write,

Cat(x |π) =
K∏

k=1

πxk
k = exp

[
K∑

k=1

xk log πk

]

4. Suppose n such trials are made where outcome k occurred nk times with
∑K

k=1 nk = n.

5. The joint distribution of n1, n2, . . . , nK is multinomial

P(n1, n2, . . . , nK ) = n!
K∏

i=1

πni
i

ni !

Homework (Representing a exponential family)

Represent the multinoulli distribution as a special case of exponential family.
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Uniform distribution

1. Models a continuous random variable X distributed uniformly over a finite interval [a, b].

U(X ; a, b) =
1

b − a

2. The expected value and the variance of X are equal to

E [X ] =
b + a

2

Var(X ) =
(b − a)2

12
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Normal (Gaussian) distribution

1. For 1-dimensional normal or Gaussian distributed variable X with mean µ and variance σ2

N (x ;µ, σ2) =
1

σ
√
2π

exp

{
− (x − µ)2

2σ2

}

N (x|µ, σ2)

x

2σ

µ

2. The expected value and the variance of X are equal to

E [X ] = µ

Var(X ) = σ2

3. Precision (inverse variance): β = 1
σ2
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Multivariate Gaussian distribution

1. Distribution over a multivariate random variables vector x ∈ RD of real numbers

2. Defined by a mean vector µ ∈ RD and a D × D covariance matrix Σ

N (x ;µ,Σ) =
1√

(2π)D |Σ|
exp

{
−1

2
(x − µ)⊤Σ−1(x − µ)

}

2.5. Joint probability distributions 47
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Figure 2.13 We show the level sets for 2d Gaussians. (a) A full covariance matrix has elliptical contours.
(b) A diagonal covariance matrix is an axis aligned ellipse. (c) A spherical covariance matrix has a circular
shape. (d) Surface plot for the spherical Gaussian in (c). Figure generated by gaussPlot2Ddemo.

distribution tends towards a Gaussian. The distribution has the following properties

mean = µ, mode = µ, Cov =
ν

ν − 2
Σ (2.73)

2.5.4 Dirichlet distribution

A multivariate generalization of the beta distribution is the Dirichlet distribution9, which has
support over the probability simplex, defined by

SK = {x : 0 ≤ xk ≤ 1,
K∑

k=1

xk = 1} (2.74)

The pdf is defined as follows:

Dir(x|α) ! 1

B(α)

K∏

k=1

xαk−1
k I(x ∈ SK) (2.75)

9. Johann Dirichlet was a German mathematician, 1805–1859.

3. The covariance matrix Σ must be symmetric and positive definite

3.1 All eigenvalues are positive

3.2 z⊤Σz > 0 for any real vector z .

4. Often we parameterize a multivariate Gaussian using the precision matrix Λ = Σ−1.
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Bayes theorem

1. Bayes theorem

p(Y |X ) =
P(X |Y )P(Y )

P(X )

=
P(X |Y )P(Y )∑
Y p(X |Y )p(Y )

1.1 Prior of Y (p(Y )) : We have this information before observing anything about Y .

1.2 Posterior of Y (p(Y |X ) : This is the distribution of Y after observing X .

1.3 Likelihood of X (p(X |Y )) : This is the conditional probability that an event Y has the

associated observation X .

1.4 Evidence (p(X )) : This is the marginal probability that an observation X is seen.

2. In other words

posterior =
prior × likelihood

evidence
.
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Prior distribution

1. What does the shape of a prior tell us?

It tells us your belief as to how the underlying parameter should be distributed.

2. Which prior should we choose?

2.1 Based on your preference

You know from historical data that the parameter should behave in certain ways.

2.2 Based on physics

The parameter has a physical interpretation, so you need to abide by the physical laws.

2.3 Choose a prior that is computationally friendlier.

This is the topic of the conjugate prior, which is a prior that does not change the form of the

posterior distribution.
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Maximum a posteriori estimation

1. In many learning scenarios, the learner considers some set Y and is interested in finding

the most probable Y ∈ Y given observed data X .

2. This is called maximum a posteriori estimation (MAP) and can be estimated using Bayes

theorem.

YMAP = argmax
Y∈Y

p(Y |X )

= argmax
Y∈Y

P(X |Y )P(Y )

P(X )

= argmax
Y∈Y

P(X |Y )P(Y )

3. P(X ) is dropped because it is constant and independent of Y .

YMAP = argmax
Y∈Y

P(X |Y )P(Y )

= argmax
Y∈Y

{logP(X |Y ) + logP(Y )}

= argmin
Y∈Y

{− logP(X |Y )− logP(Y )}
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Maximum likelihood estimation

1. In some cases, we will assume that every Y ∈ Y is equally probable.

2. This is called maximum likelihood estimation.

YML = argmax
Y∈Y

P(X |Y )

= argmax
Y∈Y

logP(X |Y )

= argmin
Y∈Y

{− logP(X |Y )}

3. Let x1, x2, . . . , xN be random samples drawn from p(X ,Y ).

4. Assuming statistical independence between the different samples,we can form p(X |Y ) as

p(X |Y ) = p(x1, x2, . . . , xN |Y ) =
N∏

n=1

p(xn|Y )

5. This method estimates Y so that p(X |Y ) takes its maximum value.

YML = argmax
Y∈Y

N∏

n=1

p(xn|Y )
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Maximum likelihood estimation(cont.)

1. A necessary condition that YML must satisfy in order to be a maximum is the gradient of

the likelihood function with respect to Y to be zero.

∂
∏N

n=1 p(xn|Y )

∂Y
= 0

2. Because of the monotonicity of the logarithmic function, we define the log likelihood

function as

L(Y ) = ln
N∏

n=1

p(xn|Y )

3. Equivalently, we have

∂L(Y )

∂Y
=

N∑

n=1

∂ln p(xn|Y )

∂Y

=
N∑

n=1

1

p(xn|Y )

∂p(xn|Y )

∂Y
= 0
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Readings

1. Chapter 2 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Chapter 2 of Machine Learning: A probabilistic perspective (Murphy 2012).

3. Chapter 1 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?

33 / 33


	Probability
	Random variables
	Probability distributions
	Discrete distributions
	Continuous distributions

	Bayes theorem

