Machine learning
Reinforcement Learning
Hamid Beigy

Sharif University of Technology

May 20, 2023

of contents

1. Introduction

2. Non-associative reinforcement learning

3. Associative reinforcement learning

4. Goals,rewards, and returns

5. Markov decision process

6. Model based methods

7. Value-based methods

8. Policy-based methods

9. Reading

1/38

Introduction

Introduction (Faces of RL)

Computer Science

Engineering Neuroscience

Psychology

2/38

Introduction

@ Reinforcement learning is what to do (how to map situations to actions) so as to maximize a
scalar reward/reinforcement signal

@ The learner is not told which actions to take as in supervised learning, but discover which actions
yield the most reward by trying them.

@ The trial-and-error and delayed reward are the two most important feature of reinforcement
learning.

@ Reinforcement learning is defined not by characterizing learning algorithms, but by characterizing
a learning problem.

@ Any algorithm that is well suited for solving the given problem, we consider to be a reinforcement
learning.

@ One of the challenges that arises in reinforcement learning and other kinds of learning is tradeoff
between exploration and exploitation.

3/38

Introduction

o A key feature of reinforcement learning is that it explicitly considers the whole problem of a
goal-directed agent interacting with an uncertain environment.

™1 Agent
state rreward action
S; t a,
< Feer

' 5., | Environment [<—

4/38

Introduction (State)

o Experience is a sequence of observations, actions, rewards.

O1,M,a1,...,8t—1,0t, It

o The state is a summary of experience

se = f(o1,n,a1,...,ac—1,0¢It)

@ In a fully observed environment
St = f(Ot)

5/38

Elements of RL

o Policy : A policy is a mapping from received states of the environment to actions to be taken
(what to do?).

o Reward function: It defines the goal of RL problem. It maps each state-action pair to a single
number called reinforcement signal, indicating the goodness of the action. (what is good?)

o Value : It specifies what is good in the long run. (what is good because it predicts reward?)

Model of the environment (optional): This is something that mimics the behavior of the

environment. (what follows what?)

6/38

An example : Tic-Tac-Toe

o Consider a two-playes game (Tic-Tac-Toe)

starting position

opponent's move
our move
opponent's move

O X|X

opponent's move

S

our move

e et Vet Yot Vot Vot

o Consider the following updating

V(s) < V(s) + o[V(s') = V()]

7/38

Types of reinforcement learning

@ Non-associative reinforcement learning :
act in more than one state.

The learning method that does not involve learning to

4 N\
> Random Environment
\ y,
a(n) B(n)
4 N\
Stochastic Automaton <
. J
@ Associative reinforcement learning :
than one state.

The learning method that involves learning to act in more

| Agent II
state reward action
S i a;
'\ Ty
s, | Environment |<——

8/38

Non-associative reinforcement learning

Multi-arm Bandit problem

o Consider that you are faced repeatedly with a choice among n different options or actions.

@ After each choice, you receive a numerical reward chosen from a stationary probability distribution
that depends on the action you selected.
@ Your objective is to maximize the expected total reward over some time period.

o This is the original form of the n—armed bandit problem called a slot machine.

9/38

Action-value methods

o Consider some simple methods for estimating the values of actions and then using the estimates
to select actions.

o Let the true value of action a denoted as Q*(a) and its estimated value at t™ play as Q:(a).
@ The true value of an action is the mean reward when that action is selected.

@ One natural way to estimate this is by averaging the rewards actually received when the action
was selected.

o In other words, if at the t play action a has been chosen k, times prior to t, yielding rewards

rn, r,...,r,, then its value is estimated to be

n+rn+...+r,

Q:(a) = ks

10/ 38

Action selection strategies

o Greedy action selection : This strategy selects the action with highest estimated action value.
ar = argmax Q:(a)
a

@ e—greedy action selection : This strategy selects the action with highest estimated action value
most of time but with small probability € selects an action at random, uniformly, independently of
the action-value estimates.

@ Softmax action selection : This strategy selects actions using the action probabilities as a graded
function of estimated value.

(a) _ eXth(a)/"'
pa) = S, expQd)/T

11/38

Learning automata

@ Environment represented by a tuple < o, 3, C >,

1. a={a1,a2,..., ,ar } shows a set of inputs,
B ={0,1} represents the set of values that the reinforcement signal can take,
C ={ci,c,...,c} is the set of penalty probabilities, where ¢; = Prob[S(k) = 1|a(k) = «;].

= {0,1} is a set of inputs,
a={a1,az,...,a,} is a set of actions,

2.
3.
@ A variable structure learning automaton is represented by triple < 3, c, T >,
1.
2.
3. T is a learning algorithm used to modify action probability vector p.

12 /38

Lr_.p learning algorithm

@ In linear reward-epenalty algorithm (Lgr—_.p) updating rule for p is defined as

_ _) k) Faxl—p(k)] if i=j
pilk+1) _{ pi(k) — a % py(K) Ny
when 8(k) =0 and
' | pk) x (1 =) if o=
Pj(k+1){ Ltk —b) i i)

when g(k) = 1.
o Parameters 0 < b < a < 1 represent step lengths.
@ When a = b, we call it linear reward penalty(Lg_p) algorithm.

@ When b = 0, we call it linear reward inaction(Lg_,) algorithm.

13 /38

Measure learning in learning automata

o In stationary environments, average penalty received by automaton is

M(k) = E[B(k)|p(k)] = Prob[8(k) = 1|p(k)] = Z cipi(k)-

i=1

A learning automaton is called expedient if

lim E[M(K)] < M(0)

@ A learning automaton is called optimal if

lim E[M(k)] = ming¢;
k—o0 i

A learning automaton is called e—optimal if
lim E[M(k)] < minc +¢€
k— o0 i

for arbitrary ¢ > 0

14 / 38

Associative reinforcement learning

Associative reinforcement learning

The learning method that involves learning to act in more than one state.

]

-
| Agent |
state reward action
\Y & a;
:4 Tt .
s, | Environment |

15/ 38

Goals,rewards, and returns

Goals,rewards, and returns

@ In reinforcement learning, the goal of the agent is formalized in terms of a special reward signal
passing from the environment to the agent.

@ The agent's goal is to maximize the total amount of reward it receives. This means maximizing
not immediate reward, but cumulative reward in the long run.

@ How might the goal be formally defined?

@ In episodic tasks the return, Ry, is defined as
Re=n+n+...4+rr

@ In continuous tasks the return, R, is defined as

o0
k
R: = E Y Fttkt1
k=0

@ The unified approach

r=+1 ry=+1 r;=+l1 r=0
.—> (:)—»(:)—» rs=0

16 / 38

Markov decision process

Markov decision process

o A RL task satisfing the Markov property is called a Markov decision process (MDP).
@ If the state and action spaces are finite, then it is called a finite MDP.

@ A particular finite MDP is defined by its state and action sets and by the one-step dynamics of the
environment.

= Prob{s:y1 = Sl|5t =s,a = a}
Ri = Elriilse=s,at=a,se1=5]
@ Recycling Robot MDP
1, RYE 1-f, -3

B R search
s

cl search
o, Reeareh l—o, Reare

17/ 38

Value functions

@ Let in state s action a is selected with probability of (s, a).

@ Value of state s under a policy 7 is the expected return when starting in s and following 7

St_s}

= ZT((S,Q)ZP;S/ [Ris/ +’YV7T(S/)] .

thereafter.

Vi(s) = E{Rise=s}=E: {Z’Ykrt+k+1
k=0

o Value of action a in state s under a policy 7 is the expected return when starting in s taking

St:573t:3}

action a and following 7 thereafter.

Qw(sv a) = ET({Rflst =S,at = a} = E7r { nyer»ki»l

k=0

18 / 38

Optimal value functions

Policy 7 is better than or equal of 7’ iff for all s V7 (s) > V"/(s).
@ There is always at least one policy that is better than or equal to all other policies. This is an
optimal policy.
@ Value of state s under the optimal policy (V*(s)) equals
V*(s) = max V" (s)
o Value of action a in state s under the optimal policy (Q" (s, a) equals
Q" (s,a) = max Q" (s, a)

Backup diagram for V* and Q*

(@) . (b) o

19 /38

Approaches to RL

1. Model-based RL

1.1 Build a model of the environment.
1.2 Plan (e.g. by lookahead) using model.

2. Value-based RL

2.1 Estimate the optimal value function Q* (s, a)
2.2 This is the maximum value achievable under any policy

3. Policy-based RL

3.1 Search directly for the optimal policy 7*.
3.2 This is the policy achieving maximum future reward.

20/ 38

Model based methods

Model based methods (dynamic programming)

@ The key idea of DP is the use of value functions to organize and structure the search for good
policies.

@ We can easily obtain optimal policies once we have found the optimal value functions, or , which
satisfy the Bellman optimality equations:

Vi(s) = max E{res1+vV*(st41)|st = s,ar = a}
= maaxz P& [Riy +V*(s)] .
5/
@ Value of action a in state s under a policy 7 is the expected return when starting in s taking

action a and following 7 thereafter.

Q" (s,a) = E{rnu+~v max Q" (st41,a)|st = s,ar = a}
a

Z Pz [R;/ +ymax Q*(s’, ")
a/

21/38

Policy iteration

Policy iteration is an iterative process

E I E I E
TI'OA——>V7T0 —>7T1A——)Vﬂ—l — T —n —V

Sts}

= Z 7(s, a) Z P [Ri + V7 (s")].

@ Policy iteration has two phases : policy evaluation and improvement.

In policy evaluation, we compute state or state-action value functions

V7(s)

E{R:|s: = s} = Ex {ZWkrt+k+1
k=0

In policy improvement, we change the policy to obtain a better policy

m'(s)

argmax Q" (s, a)

— argmax 3 PL [RL +4V7(s)] -

22/38

Value and generalized policy iteration

@ In value iteration we have
Vigi(s) = max E{res1 + vVi(st1)|st = s, ac = a}
= m;‘axZ: Pz [Ris/ + 'yV,fs’)].
o Generalized policy iteration

evaluation

Vv —=v"

o v
n—>greedy(V)

improvement

23 /38

DP Backup diagram

V(St) ¢ Ex[Res1 +yV/(Se11)]

24 /38

Value-based methods

Value-based methods

@ These methods lean policy function implicitly.

These methods first learn a value function Q(s, a).

Then infer policy (s, a) from Q(s, a).

Examples

Monte-carlo methods
Q-learning

SARSA

TD(X)

25 /38

Value-based methods

Monte Carlo methods

Monte Carlo (MC) methods

@ MC methods learn directly from episodes of experience.

o MC is model-free: no knowledge of MDP transitions / rewards
@ MC learns from complete episodes

@ MC uses the simplest possible idea: value = mean return

o Goal: learn V, from episodes of experience under policy 7

k—1 Sk

aq [e%) (%} @
S1 —>52 —>53 —>S4
Ry Ro R3 Rik—1

k
@ The return is the total discounted reward:
T-1
Gt =Rey1 + YRy + ...+ Rt
@ The value function is the expected return:

Vi(s) = Ex[G¢|S: = 5]

@ Monte-Carlo policy evaluation uses empirical mean return instead of expected return

26 / 38

First-Visit Monte-Carlo Policy Evaluation

To evaluate state s

@ The first time-step t that state s is visited in an episode, Increment counter
N(s) < N(s)+1

@ Increment total return
S(s) < S(s) + G:

@ Value is estimated by mean return
5(s)
V(s) =
(s) NGS)

By law of large numbers,
V(s) = vx(s)

as
N(s) = oo

27 /38

Every-Visit Monte-Carlo Policy Evaluation

To evaluate state s

o Every time-step t that state s is visited in an episode, Increment counter
N(s) < N(s)+1

@ Increment total return
S(s) < S(s) + G:

@ Value is estimated by mean return
5(s)
V(s) =
(s) NGS)

By law of large numbers,
V(s) = vx(s)

as
N(s) = oo

28 /38

MC Backup diagram

V(S:) «+ V(S:) + a(G: — V(S:))

\)

t
()

29 /38

Value-based methods

Temporal-difference methods

Temporal-difference methods

@ TD learning is a combination of Monte Carlo ideas and dynamic programming (DP) ideas.

o Like Monte Carlo methods, TD methods can learn directly from raw experience without a model
of the environment’s dynamics.

o Like DP, TD methods update estimates based in part on other learned estimates, without waiting
for a final outcome (they bootstrap).

@ Monte Carlo methods wait until the return following the visit is known, then use that return as a
target for V(s;) while TD methods need wait only until the next time step.

@ The simplest TD method, known as TD(0), is

V(st) < V(st) + afreea +7V(se1) = V(st)]

30/38

Temporal-Difference Backup

V(st) <= V(st) + afreea +yV(serr) — V(st)]

31/38

Temporal-difference methods (cont.)

o Algorithm for TD(0)

Initialize V/(s) arbitrarily, m to the policy to be evaluated
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
a < action given by T for s
Take action a; observe reward, r, and next state, s
V(s) < V(s)+alr+aV(s')—V(s)]
s+
until s is terminal

!

32/38

Temporal-difference methods (SARSA)

o An episode consists of an alternating sequence of states and state-action pairs:

r r
H+1 +2
@ ¢ @ ¢ @ B
St’“t St+1’af+1 St+2’ %)

@ SARSA, which is an on policy, updates values using

Q(st, at) < Q(st, ar) + ars1 + YQ(st41, acr1) — Q(st, ar)]

33/38

Temporal-difference methods (Q-learning)

@ An episode consists of an alternating sequence of states and state-action pairs:

r r
Sty Str10 41 Str2 40

o Q-learning, which is an off policy, updates values using

Q(st, ar) < Q(se,ar) + [rm + 7y max Q(st+1,a) — Q(se, at)]

34/38

Policy-based methods

Policy-based methods

@ In policy-based learning, there is no value function.

@ The policy 7 (s, a) is parametrized by vector 6 (7 (s, a; 0)).

o Explicitly learn policy 7(s, a; 0) that implicitly maximize reward over all policies.
e Given policy 7(s, a; @) with parameters 0, find best 0.

@ How do we measure the quality of a policy 7(s, a;)7

o Let objective function be J(0) .

o Find policy parameters ¢ that maximize J(0) .

@ Sample algorithm: REINFORCE

35/38

Policy-based methods versus value-based methods

@ Advantages of policy-based methods over value-based methods

Usually, computing Q-values is harder than picking optimal actions
Better convergence properties

Effective in high dimensional or continuous action spaces

Can benefit from demonstrations

Policy subspace can be chosen according to the task

Exploration can be directly controlled

Can learn stochastic policies

o Disadvantages of policy-based methods over value-based methods

o Typically converge to a local optimum rather than a global optimum
o Evaluating a policy is typically data inefficient and high variance

36 /38

Reading

Readings

1. Chapters 1-6 of Reinforcement Learning: An Introduction (Sutton and Barto 2018).

37/38

References i

D Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduction.

38/38

Questions?

	Introduction
	Non-associative reinforcement learning
	Associative reinforcement learning
	Goals,rewards, and returns
	Markov decision process
	Model based methods
	Value-based methods
	Monte Carlo methods
	Temporal-difference methods

	Policy-based methods
	Reading

