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Introduction



Introduction

1. Machine Learning algorithms induce hypothesis that depend on the training set, and there is a
need for statistical testing to

Asses expected performance of a hypothesis and

Compare expected Performances of two hypothesis to compare them.

2. Classifier evaluation criteria

Accuracy (or Error) The ability of a hypothesis to correctly predict the label of new/previously

unseen data.

Speed The computational costs involved in generating and using a hypothesis.

Robustness The ability of a hypothesis to make correct predictions given noisy data or data with

missing values.

Scalability The ability to construct a hypothesis efficiently given large amounts of data.

Interpretability The level of understanding and insight that is provided by the hypothesis.
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Evaluating the accuracy/error of classifiers

1. Given the observed accuracy of a hypothesis over a limited sample data, how well does this

estimate its accuracy over additional examples.

2. Given one hypothesis outperforms another over sample data, how probable is that this hypothesis

is more accurate in general.

3. When data is limited what is the best way to use this data to learn a hypothesis and estimate its

accuracy.
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Measuring performance of a classifier

1. Measuring performance of a hypothesis is partitioning data to

Training set

Validation set different from training set.

Test set different from training and validation sets.

2. Problems with this approach

Training and validation sets may be small and may contain exceptional instances such as noise, which

may mislead us.

The learning algorithm may depend on other random factors affecting the accuracy (ex: initial weights

of a neural network trained with BP. We must train/test several times and average the results.

3. Important points

Performance of a hypothesis estimated using a training/test set conditioned on the used data set and

can’t used to compare algorithms in domain independent ways.

Validation set is used for model selection, comparing two algorithms, and decide to stop learning.

In order to report the expected performance, we should use a separate test set unused during learning.
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Error of a classifier

Definition (Sample error)

The sample error (denoted EE (h)) of hypothesis h with respect to target concept c and data sample

S of size N is.

EE (h) =
1

N

∑
x∈S

I [c(x) ̸= h(x)]

Definition (True error)

The true error (denoted E(h)) of hypothesis h with respect to target concept c and distribution D is

the probability that h will misclassify an instance drawn at random according to distribution D.

E(h) = P
x∼D

[c(x) ̸= h(x)]

5 / 30



Notions of errors

1. True error is

c h

Instance space X

2. Our concern

How we can estimate the true error (E(h)) of hypothesis h using its sample error (EE (h)) ?

Can we bound true error of h given sample error of h?
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Some performance measures of classifiers

1. Error rate The error rate is the fraction of incorrect predictions for the classifier over the test set,

defined as

EE (h) =
1

N

∑
x∈S

I [c(x) ̸= h(x)]

Error rate is an estimate of the probability of misclassification.

2. Accuracy The accuracy of a classifier is the fraction of correct predictions over the test set:

Accuracy(h) =
1

N

∑
x∈S

I [c(x) = h(x)] = 1− EE (h)

Accuracy gives an estimate of the probability of a correct prediction.
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Some performance measures of classifiers

1. What you can say about the accuracy of 90% or the error of 10% ?

2. For example, if 3− 4% of examples are from negative class, clearly accuracy of 90% is not

acceptable.

3. Confusion matrix

Some performance measures of classifiers

1 What you can say about the accuracy of 90% or the error of 10% ?

2 For example, if 3 − 4% of examples are from negative class, clearly
accuracy of 90% is not acceptable.

3 Confusion matrix
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TP FP

FN TN

4 Given C classes, a confusion matrix is a table of C × C .
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4. Given C classes, a confusion matrix is a table of C × C .
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Some performance measures of classifiers

1. Precision (Positive predictive value) Precision is proportion of predicted positives which are actual

positive and defined as

Precision(h) =
TP

TP + FP

2. Recall (Sensitivity) Recall is proportion of actual positives which are predicted positive and

defined as

Recall(h) =
TP

TP + FN

3. Specificity Specificity is proportion of actual negative which are predicted negative and defined as

Specificity(h) =
TN

TN + FP

9 / 30



Some performance measures of classifiers

1. Balanced classification rate (BCR) Balanced classification rate provides an average of recall

(sensitivity) and specificity, it gives a more precise picture of classifier effectiveness. Balanced

classification rate defined as

BCR(h) =
1

2
[Specificity(h) + Recall(h)]

2. F-measure F-measure is harmonic mean between precision and recall and defined as

F −Measure(h) = 2× Persicion(h)× Recall(h)

Persicion(h) + Recall(h)
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Evaluating the performance of a classifier

1. Hold-out method

2. Random Sub-sampling

3. Cross validation method

4. Leave-one-out method

5. 5× 2 Cross validation method

6. Bootstrapping method
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Hold-out method

1. Hold-out Hold-out partitions the given data into two independent sets : training and test sets.

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

4

The holdout method
Split dataset into two groups

Training set: used to train the classifier
Test set: used to estimate the error rate of the trained classifier

A typical application the holdout method is determining a stopping 
point for the back propagation error

Training Set Test Set

Total number of examples

Epochs

MSE

Training set error

Test set errorStopping point

Typically two-thirds of the data are allocated to the training set and the remaining one-third is

allocated to the test set.

The training set is used to drive the model.

The test set is used to estimate the accuracy of the model.
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Random sub-sampling method

1. Random sub-sampling Random sub-sampling is a variation of the hold-out method in which

hold-out is repeated k times.

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University
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Random Subsampling
Random Subsampling performs K data splits of the dataset

Each split randomly selects a (fixed) no. examples without replacement
For each data split we retrain the classifier from scratch with the training 
examples and estimate Ei with the test examples

The true error estimate is obtained as the average of the 
separate estimates Ei

This estimate is significantly better than the holdout estimate

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Test example

∑
=

=
K

1i
iE

K
1E

The estimated error rate is the average of the error rates for classifiers derived for the independently

and randomly generated test partitions.

Random sub-sampling can produce better error estimates than a single train-and-test partition

(hold-out method).
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Cross validation method

1. K -fold cross validation The initial data are randomly partitioned into K mutually exclusive

subsets or folds, S1, S2, . . . , SK , each of approximately equal size. .

1.4. The Curse of Dimensionality 33

Figure 1.18 The technique of S-fold cross-validation, illus-
trated here for the case of S = 4, involves tak-
ing the available data and partitioning it into S
groups (in the simplest case these are of equal
size). Then S − 1 of the groups are used to train
a set of models that are then evaluated on the re-
maining group. This procedure is then repeated
for all S possible choices for the held-out group,
indicated here by the red blocks, and the perfor-
mance scores from the S runs are then averaged.

run 1

run 2

run 3

run 4

data to assess performance. When data is particularly scarce, it may be appropriate
to consider the case S = N , where N is the total number of data points, which gives
the leave-one-out technique.

One major drawback of cross-validation is that the number of training runs that
must be performed is increased by a factor of S, and this can prove problematic for
models in which the training is itself computationally expensive. A further problem
with techniques such as cross-validation that use separate data to assess performance
is that we might have multiple complexity parameters for a single model (for in-
stance, there might be several regularization parameters). Exploring combinations
of settings for such parameters could, in the worst case, require a number of training
runs that is exponential in the number of parameters. Clearly, we need a better ap-
proach. Ideally, this should rely only on the training data and should allow multiple
hyperparameters and model types to be compared in a single training run. We there-
fore need to find a measure of performance which depends only on the training data
and which does not suffer from bias due to over-fitting.

Historically various ‘information criteria’ have been proposed that attempt to
correct for the bias of maximum likelihood by the addition of a penalty term to
compensate for the over-fitting of more complex models. For example, the Akaike
information criterion, or AIC (Akaike, 1974), chooses the model for which the quan-
tity

ln p(D|wML) − M (1.73)

is largest. Here p(D|wML) is the best-fit log likelihood, and M is the number of
adjustable parameters in the model. A variant of this quantity, called the Bayesian
information criterion, or BIC, will be discussed in Section 4.4.1. Such criteria do
not take account of the uncertainty in the model parameters, however, and in practice
they tend to favour overly simple models. We therefore turn in Section 3.4 to a fully
Bayesian approach where we shall see how complexity penalties arise in a natural
and principled way.

1.4. The Curse of Dimensionality

In the polynomial curve fitting example we had just one input variable x. For prac-
tical applications of pattern recognition, however, we will have to deal with spaces

Training and testing is performed K times.

In iteration k, partition Sk is used for test and the remaining partitions collectively used for training.

The accuracy is the percentage of the total number of correctly classified test examples.

The advantage of K -fold cross validation is that all the examples in the dataset are eventually used

for both training and testing.
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Leave-one-out method

1. Leave-one-out Leave-one-out is a special case of K -fold cross validation where K is set to

number of examples in dataset.

Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University
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Leave-one-out Cross Validation
Leave-one-out is the degenerate case of K-Fold Cross 
Validation, where K is chosen as the total number of examples

For a dataset with N examples, perform N experiments
For each experiment use N-1 examples for training and the remaining 
example for testing

As usual, the true error is estimated as the average error rate on 
test examples

∑
=

=
N

1i
iE

N
1E

Total number of examples

Experiment 1

Experiment 2

Experiment 3

Experiment N

Single test example

For a dataset with N examples, perform N experiments.

For each experiment use N − 1 examples for training and the remaining example for testing
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5× 2 method

1. 5× 2 Cross validation method repeats five times 2-fold

cross validation method (Alpaydin 1999).

2. Training and testing is performed 10 times.

3. The estimated error rate is the average of the error rates

for classifiers derived for the independently and randomly

generated test partitions.

5x2cv F test5x2cv F test
p(1,1)A p(1,1)B p(1)1

p1 s21
p(1,2)A p(1,2)B p(2)1

p
(2,1)
A p

(2,1)
B p

(1)
2

p2 s22
p
(2,2)
A p

(2,2)
B p

(2)
2

p
(3,1)
A p

(3,1)
B p

(1)
3

p3 s23
p
(3,2)
A p

(3,2)
B p

(2)
3

p(4,1)A p(4,1)B p(1)4
p4 s24

p(4,2)A p(4,2)B p(2)4

p(5,1)A p(5,1)B p(1)5
p5 s25

p(5,2)A p(5,2)B p(2)5
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Estimating true error

1. How well does EE (h) estimate E(h)?

Bias in the estimate If training / test set is small, then the accuracy of the resulting hypothesis is a

poor estimator of its accuracy over future examples.

bias = E [EE (h)]− E(h).

For unbiased estimate, h and S must be chosen independently.

Variance in the estimate Even with unbiased S, EE (h) may still vary from E(h). The smaller test set

results in a greater expected variance.

2. Hypothesis h misclassifying 12 of the 40 examples in S . What is E(h)?

3. We use the following experiment

Choose sample S of size N according to distribution D.

Measure EE (h)

EE (h) is a random variable (i.e., result of an experiment).

EE (h) is an unbiased estimator for E(h)(show it!).

4. Given observed EE (h), what can we conclude about E(h)?

17 / 30



Distribution of error

1. EE (h) is a random variable with binomial distribution, for the experiment with different randomly

drawn S of size N, the probability of observing r misclassified examples is

p(r) =
N!

r !(N − r)!
E(h)r [1− E(h)]N−r

2. For example for N = 40 and E(h) = p = 0.2,

0 10 20 30 40

0.0

0.1

0.1

0.2
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Distribution of error

1. For binomial distribution, we have

E [r ] = Np

Var(r) = Np(1− p)

2. p is the probability of misclassifying a single instance drawn from D.

3. The EE (h) and E(h) are

EE (h) =
r

N

E(h) = p

where

N is the number of instances in the sample S,

r is the number of instances from S misclassified by h,

p is the probability of misclassifying a single instance drawn from D.
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Distribution of error

1. It can be shown that EE (h) is unbiased estimator for E(h) (show it!).

2. Since r is Binomially distributed, its variance is Np(1− p).

3. Unfortunately p is unknown, but we can substitute our estimate r
N

for p.

4. In general, given r errors in a sample of N independently drawn test examples, the standard

deviation for EE (h) is given by

√
Var [EE (h)] =

√
p(1− p)

N

≃
√

EE (h)(1− EE (h))

N
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Confidence intervals

1. One common way to describe the uncertainty associated with an estimate is to give an interval

within which the true value is expected to fall, along with the probability with which it is expected

to fall into this interval.

2. How can we derive confidence intervals for EE (h)?

3. For a given value of M, how can we find the size of the interval that contains M% of the

probability mass?

4. Unfortunately, for the Binomial distribution this calculation can be quite tedious.

5. Fortunately, however, an easily calculated and very good approximation can be found in most

cases, based on the fact that for sufficiently large sample sizes the Binomial distribution can be

closely approximated by the Normal distribution.
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Confidence intervals

1. In Normal Distribution N (µ, σ2), M% of area (probability) lies in µ± zMσ, where

M% 50% 68% 80% 90% 95% 98% 99%

zM 0.67 1.0 1.28 1.64 1.96 2.33 2.58

1.96σ
4

x

y
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Comparing two hypotheses

1. Test h1 on sample S1 and test h2 on S2.

Pick parameter to estimate d = E(h1)− E(h2).

Choose an estimator d̂ = EE (h1)− EE (h2).

Determine probability distribution that governs estimator:

EE (h1) and EE (h2) can be approximated by Normal Distribution.

Difference of two Normal distributions is also a Normal distribution, d̂ will also approximated by a

Normal distribution with mean d and variance of this distribution is equal to sum of variances of

EE (h1) and EE (h2) . Hence, we have√
Var [d̂ ] =

√
EE (h1)(1− EE (h1))

N1
+

EE (h2)(1− EE (h2))

N2

Find interval (L,U) such that M% of probability mass falls in interval

d̂ ± zM

√
EE (h1)(1− EE (h1))

N1
+

EE (h2)(1− EE (h2))

N2
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Comparing two algorithms

1. For comparing two learning algorithms LA and LB , we would like to estimate

E
S∼DN

[E(LA(S))− E(LB(S))]

where L(S) is the hypothesis output by learner L using training set S .

2. This shows the expected difference in true error between hypotheses output by learners LA and

LB , when trained using randomly selected training sets S drawn according to distribution D.

3. But, given limited data S0, what is a good estimator?

Could partition S0 into training set S tr
0 and test set S ts

0 , and measure

d̂ = E
Sts
0

E (LA(h1))− E
Sts
0

E (LB(h2)).

where h1 and h2 are trained using training set S tr
0 and E

Sts
0

E is empirical error using test set S ts
0 .

Even better, repeat this many times and average the results such as K-fold cross validation.
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Paired t Test

Consider the following estimation problem

1. We are given the observed values of a set of independent, identically distributed random variables

Y1,Y2, . . . ,YK .

2. We wish to estimate the mean p of the probability distribution governing these Yi .

3. The estimator we will use is the sample mean Ȳ = 1
K

∑K
k=1 Yk

The task is to estimate the sample mean of a collection of independent, identically and Normally

distributed random variables.

The approximate M% confidence interval for estimating Ȳ is given by

Ȳ ± tM,K−1SȲ

where

SȲ =

√√√√ 1

K(K − 1)

K∑
k=1

(Yi − Ȳ )2
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Paired t Test

Values of tM,K−1 for two-sided confidence intervals.

M 90% 95% 98% 99%

K − 1 = 2 2.92 4.30 6.96 9.92

K − 1 = 5 2.02 2.57 3.36 4.03

K − 1 = 10 1.81 2.23 2.76 3.17

K − 1 = 20 1.72 2.09 2.53 2.84

K − 1 = 30 1.70 2.04 2.46 2.75

K − 1 = 120 1.66 1.98 2.36 2.62

K − 1 = ∞ 1.64 1.96 2.33 2.58

As K → ∞, tM,K−1 approaches zM .
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ROC Curves

1. ROC puts false positive rate (FPR = FP/NEG) on x axis.

2. ROC puts true positive rate (TPR = TP/POS) on y axis.

3. Each classifier represented by a point in ROC space corresponding to its (FPR,TPR) pair

(Fawcett 2006).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FP rate

T
P

ra
te

27 / 30



Practical aspects

1. A note on parameter tuning

Some learning schemes operate in two stages:

Stage 1: builds the basic structure

Stage 2: optimizes parameter settings

It is important that the test data is not used in any way to create the classifier

The test data can’t be used for parameter tuning!

Proper procedure uses three sets: training, validation, and test data

Validation data is used to select model.

Training and validation data are used to optimize parameters.

2. No Free Lunch Theorem

For any ML algorithm there exist data sets on which it performs well and there exist data sets on

which it performs badly!

We hope that the latter sets do not occur too often in real life.
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Readings

1. Chapter 5 of Machine Learning Book (Mitchell 1997).

2. Read papers (Jensen and Cohen 2000; Schaffer 1993).
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Questions?

30 / 30


	Introduction
	Some performance measures of classifiers
	Evaluating the performance of a classifier
	Estimating true error
	Confidence intervals
	Reading

