
Machine learning theory

Model Selection

Hamid Beigy

Sharif University of Technology

May 29, 2023



Table of contents

1. Introduction

2. Universal learners

3. Estimation and approximation errors

4. Empirical risk minimization

5. Structural risk minimization

6. Cross-validation

7. n-Fold cross-validation

8. Regularization-based algorithms

9. Reading

1 / 21



Introduction



Introduction

1. The training data can mislead the learner and results in overfitting? how?

2. To overcome this problem, we restricted the search space to some hypothesis class H.

3. This hypothesis class can be viewed as reflecting some prior knowledge that the learner has about

the task.

4. Is such prior knowledge really necessary for the success of learning?

5. Maybe there exists some kind of universal learner (a learner who has no prior knowledge about a

certain task and is ready to be challenged by any task?
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Universal learners



No-free lunch theorem

1. The no-free lunch theorem states that no such universal learner exists.

2. This theorem states that for binary classification prediction tasks, for every learner there exists a

distribution on which it fails.

Theorem (No-free lunch)

Let A be any learning algorithm for the task of binary classification with respect to the 0-1 loss over

a domain X . Let m be any number smaller than
|X |
2

, representing a training set size. Then, there

exists a distribution D over X × {0, 1} such that:

2.1 There exists a function h : X 7→ {0, 1}with R(h) = 0.

2.2 With probability of at least
1

7
over the choice of S ∼ Dm, we have that R(A(S)) ≥

1

7
.

3. This theorem states that for every learner, there exists a task on which it fails, even though that

task can be successfully learned by another learner.

4. In other words, the theorem states that no learner can succeed on all learnable tasks, every learner

has tasks on which it fails while other learners succeed.
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Prior knowledge

1. How does the No-Free-Lunch result relate to the need for prior knowledge?

Theorem

Let X be an infinite domain set and let H be the set of all functions from X to {0, 1}. Then, H is

not PAC learnable.

2. How can we prevent such failures?

3. We can escape the hazards by using our prior knowledge about a specific learning task, to avoid

the distributions that will cause us to fail when learning that task.

4. Such prior knowledge can be expressed by restricting our hypothesis class.

5. But how should we choose a good hypothesis class?

6. We want to believe that this class includes the hypothesis that has no error at all (in the PAC

setting), or at least that the smallest error achievable by a hypothesis from this class is indeed

rather small (in the agnostic setting).

7. We have just seen that we cannot simply choose the richest class (the class of all functions over

the given domain).

8. How can we have such trade off?
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Estimation and approximation errors



Error decomposition

1. The answer to the trade off is to decompose R(h).

2. Let H be a family of functions mapping X to {0, 1}.

3. The excess error of a hypothesis h chosen from H (R(h)− R∗) can be decomposed as

R(h)− R∗ =

(
R(h)− inf

h′∈H
R(h)

)
︸ ︷︷ ︸

estimation error

+

(
inf
h′∈H

R(h)− R∗
)

︸ ︷︷ ︸
approximation error

4. The estimation error depends on the hypothesis h selected.

5. The approximation error measures how well the Bayes error can be approximated using H. It is a

property of the hypothesis set H, a measure of its richness.
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Error decomposition

1. The excess error can be shown as

62 Chapter 4 Model Selection

hBayes

h⇤
h

H

Figure 4.1
Illustration of the estimation error (in green) and approximation error (in orange). Here, it is
assumed that there exists a best-in-class hypothesis, that is h⇤ such that R(h⇤) = infh2H R(h).

Model selection consists of choosing H with a favorable trade-o↵ between the ap-

proximation and estimation errors. Note, however, that the approximation error is

not accessible, since in general the underlying distribution D needed to determine

R⇤ is not known. Even with various noise assumptions, estimating the approxima-

tion error is di�cult. In contrast, the estimation error of an algorithm A, that is,

the estimation error of the hypothesis hS returned after training on a sample S, can

sometimes be bounded using generalization bounds as shown in the next section.

4.2 Empirical risk minimization (ERM)

A standard algorithm for which the estimation error can be bounded is Empiri-

cal Risk Minimization (ERM). ERM seeks to minimize the error on the training

sample:4

hERM
S = argmin

h2H

bRS(h). (4.2)

Proposition 4.1 For any sample S, the following inequality holds for the hypothesis

returned by ERM:

P
h
R(hERM

S )� inf
h2H

R(h) > ✏
i
 P


sup
h2H

|R(h)� bRS(h)| >
✏

2

�
. (4.3)

Proof: By definition of infh2H R(h), for any ✏ > 0, there exists h✏ such that

R(h✏)  infh2H R(h) + ✏. Thus, using bRS(hERM
S )  bRS(h✏), which holds by the

4 Note that, if there exists multiple hypotheses with minimal error on the training sample, then
ERM returns an arbitrary one.

2. Model selection consists of choosing H with a favorable trade-off between the approximation and

estimation errors.

3. The approximation error is not accessible, since in general the underlying distribution D needed to

determine R∗ is not known.

4. The estimation error of an algorithm A, that is, the estimation error of the hypothesis h returned

after training on a sample S , can sometimes be bounded using generalization bounds.
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Empirical risk minimization



Empirical risk minimization

1. A standard algorithm for which the estimation error can be bounded is empirical risk minimization

(ERM).

2. ERM seeks to minimize the error on the training sample.

herm = argmin
h∈H

R̂(h).

3. If there exists multiple hypotheses with minimal error on the training sample, then ERM returns

an arbitrary one.

Theorem (ERM error bound)

For any sample S , the following inequality holds for the hypothesis returned by ERM.

P
[
R(herm)− inf

h∈H
R(h) > ϵ

]
≤ P

[
sup
h∈H

|R(herm)− R̂(h)| > ϵ

2

]
.
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Empirical risk minimization

Proof.

1. By definition of infh∈H R(h), we mean for any ϵ > 0, there exists hϵ such that

R(hϵ) ≤ infh∈H R(h) + ϵ.

2. By definition of ERM, we have R̂(herm) ≤ R̂(hϵ) and hence

R(herm)− inf
h∈H

R(h) = R(herm)− R(hϵ) + R(hϵ)− inf
h∈H

R(h)

≤ R(herm)− R(hϵ) + ϵ from def. given in step 1

= R(herm)− R̂(herm) + R̂(herm)− R(hϵ) + ϵ

≤ R(herm)− R̂(herm) + R̂(hϵ)− R(hϵ) + ϵ from def. of ERM

≤ 2 sup
h∈H

∣∣∣R(h)− R̂(h)
∣∣∣+ ϵ.

3. Since the inequality holds for all ϵ > 0, it implies

R(herm)− inf
h∈H

R(h) ≤ 2 sup
h∈H

∣∣∣R(h)− R̂(h)
∣∣∣.
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Structural risk minimization



Structural risk minimization

1. We showed that the estimation error can be bounded or estimated.

2. Since the approximation error cannot be estimated, how should we choose H?

3. One way is to choose a very complex family H with no approximation error or a very small one.

4. H may be too rich for generalization bounds to hold for H.

5. Suppose we can decompose H as a union of increasingly
⋃

γ∈Γ Hγ increasing with γ for some set Γ.

4.2 Empirical risk minimization (ERM) 63

hBayes

h⇤
h

increasing �

H�

Figure 4.2
Illustration of the decomposition of a rich family H =

S
�2� H� .

definition of the algorithm, we can write

R(hERM
S )� inf

h2H
R(h) = R(hERM

S )�R(h✏) + R(h✏)� inf
h2H

R(h)

 R(hERM
S )�R(h✏) + ✏

= R(hERM
S )� bRS(hERM

S ) + bRS(hERM
S )�R(h✏) + ✏

 R(hERM
S )� bRS(hERM

S ) + bRS(h✏)�R(h✏) + ✏

 2 sup
h2H

|R(h)� bRS(h)| + ✏.

Since the inequality holds for all ✏ > 0, it implies the following:

R(hERM
S )� inf

h2H
R(h)  2 sup

h2H

|R(h)� bRS(h)|,

which concludes the proof. ⇤
The right-hand side of (4.3) can be upper-bounded using the generalization bounds

presented in the previous chapter in terms of the Rademacher complexity, the

growth function, or the VC-dimension of H. In particular, it can be bounded by

2e�2m[✏�Rm(H)]2 . Thus, when H admits a favorable Rademacher complexity, for

example a finite VC-dimension, for a su�ciently large sample, with high probability,

the estimation error is guaranteed to be small. Nevertheless, the performance of

ERM is typically very poor. This is because the algorithm disregards the complexity

of the hypothesis set H: in practice, either H is not complex enough, in which case

the approximation error can be very large, or H is very rich, in which case the

bound on the estimation error becomes very loose. Additionally, in many cases,

determining the ERM solution is computationally intractable. For example, finding

6. The problem then consists of selecting the parameter γ∗ ∈ Γ and thus the hypothesis set Hγ∗ with

the most favorable trade-off between estimation and approximation errors.
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Structural risk minimization

1. Since estimation and approximation errors are not known, instead, a uniform upper bound on their

sum can be used.

64 Chapter 4 Model Selection

�
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�⇤
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upper bound

Figure 4.3
Choice of �⇤ with the most favorable trade-o↵ between estimation and approximation errors.

a linear hypothesis with the smallest error on the training sample is NP-hard, as a

function of the dimension of the space.

4.3 Structural risk minimization (SRM)

In the previous section, we showed that the estimation error can be sometimes

bounded or estimated. But, since the approximation error cannot be estimated, how

should we choose H? One way to proceed is to choose a very complex family H with

no approximation error or a very small one. H may be too rich for generalization

bounds to hold for H, but suppose we can decompose H as a union of increasingly

complex hypothesis sets H� , that is H =
S

�2� H� , with the complexity of H�

increasing with �, for some set �. Figure 4.2 illustrates this decomposition. The

problem then consists of selecting the parameter �⇤ 2 � and thus the hypothesis

set H�⇤ with the most favorable trade-o↵ between estimation and approximation

errors. Since these quantities are not known, instead, as illustrated by Figure 4.3,

a uniform upper bound on their sum, the excess error (also called excess risk), can

be used.

This is precisely the idea behind the Structural Risk Minimization (SRM) method.

For SRM, H is assumed to be decomposable into a countable set, thus, we will

write its decomposition as H =
S

k�1 Hk. Additionally, the hypothesis sets Hk are

assumed to be nested: Hk ⇢ Hk+1 for all k � 1. However, many of the results

presented in this section also hold for non-nested hypothesis sets. Thus, we will not

make use of that assumption, unless explicitly specified. SRM consists of choosing

the index k⇤ � 1 and the ERM hypothesis h in Hk⇤ that minimize an upper bound

on the excess error.

2. This is the idea behind the structural risk minimization (SRM) method.

3. For SRM, H is assumed to be decomposable into a countable set, thus, we write it as

H =
⋃

k≥1 Hk .

4. Also, the hypothesis sets are nested, i.e. Hk ⊂ Hk+1 for all k ≥ 1.

5. However, many of the results presented here also hold for non-nested hypothesis sets.

6. SRM consists of choosing the index k∗ ≥ 1 and the ERM hypothesis h ∈ Hk∗ that minimize an

upper bound on the excess error.
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Structural risk minimization

1. The hypothesis set for SRM: H =
⋃

k≥1 Hk with H1 ⊂ H2 ⊂ . . . ⊂ Hk ⊂ . . ..

2. Solution of SRM is h∗ = argminh∈Hk ,k≥1 R̂(h) + pen(k,m).

4.3 Structural risk minimization (SRM) 65

k

er
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r

generalization bound
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empirical error

Figure 4.4
Illustration of structural risk minimization. The plots of three errors are shown as a function of
the index k. Clearly, as k, or equivalently the complexity the hypothesis set Hk, increases, the
training error decreases, while the penalty term increases. SRM selects the hypothesis minimizing
a bound on the generalization error, which is a sum of the empirical error and the penalty term.

As we shall see, the following learning bound holds for all h 2 H: for any � > 0,

with probability at least 1� � over the draw of a sample S of size m from Dm, for

all h 2 Hk and k � 1,

R(h)  bRS(h) + Rm(Hk(h)) +

r
log k

m
+

s
log 2

�

2m
.

Thus, to minimize the resulting bound on the excess error (R(h)� R⇤), the index

k and the hypothesis h 2 Hk should be chosen to minimize the following objective

function:

Fk(h) = bRS(h) + Rm(Hk) +

r
log k

m
.

This is precisely the definition of the SRM solution hSRM
S :

hSRM
S = argmin

k�1,h2Hk

Fk(h) = argmin
k�1,h2Hk

bRS(h) + Rm(Hk) +

r
log k

m
. (4.4)

Thus, SRM identifies an optimal index k⇤ and therefore hypothesis set Hk⇤ , and re-

turns the ERM solution based on that hypothesis set. Figure 4.4 further illustrates

the selection of the index k⇤ and hypothesis set Hk⇤ by SRM by minimizing an upper

bound on the sum of the training error and the penalty term Rm(Hk)+
p

log k/m.

The following theorem shows that the SRM solution benefits from a strong learning

guarantee. For any h 2 H, we will denote by Hk(h) the least complex hypothesis

set among the Hks that contain h.
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SRM Guarantee

Definition (SRM)

Hk(h) is the simplest hypothesis set containing h.

hsrm is the hypothesis returned by SRM.

hsrm = argmin
h∈Hk ,k≥1

R̂(h) +Rm(Hk) +

√
log k

m
+

√√√√ log
2

δ
2m

= Fk(h)

Assume that there exists h∗ ∈ H such that h∗ = infh∈H R̂(h)

Theorem (SRM learning guarantee)

For any δ > 0, with probability at least 1− δ over sample S ∈ Dm, the generalization error of the

hypothesis hsrm returned by the SRM is bounded as follows:

R(hsrm) ≤ R̂(h) + 2Rm(Hk(h)) +

√
log k(h)

m
+

√√√√
2
log

3

δ
m

.
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SRM Guarantee

Proof. (SRM learning guarantee)

1. Using the union bound, the following general inequality holds:

P
[
sup
h∈H

R(h)− Fk(h)(h) > ϵ

]
= P

[
sup
k≥1

sup
h∈Hk

R(h)− Fk(h) > ϵ

]

≤
∞∑
k=1

P

[
sup
h∈Hk

R(h)− Fk(h) > ϵ

]

=
∞∑
k=1

P

[
sup
h∈Hk

R(h)− R̂(h)−Rm(Hk) > ϵ+

√
log k

m

]

≤
∞∑
k=1

exp

(
−2m

[
ϵ+

√
log k

m

])

≤
∞∑
k=1

exp
(
−2mϵ2

)
exp (−2 log k)

= exp
(
−2mϵ2

) ∞∑
k=1

1

k2
=

π2

6
exp

(
−2mϵ2

)
≤ 2 exp

(
−2mϵ2

)
.
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SRM Guarantee

Proof. (SRM learning guarantee (Cont.))

2. For two random variables X1 and X2, if X1 + X2 > ϵ, then either X1 >
ϵ

2
or X2 >

ϵ

2
.

3. Let g(h) = R(hsrm)− R(h)− 2Rm(Hk(h))−
√

log k(h)

m
.

4. We also have Fk(hsrm)(hsrm) ≤ Fk(h)(h) for all h ∈ H and for all h ∈ H, we have.

P [g(h) > ϵ] ≤ P
[
R(hsrm) − Fk(hsrm)(h) >

ϵ

2

]
+ P

Fk(hsrm)(hsrm) − R(h) − 2Rm(Hk (h)) −
√

log k(h)

m
>

ϵ

2


≤ 2 exp

(
−mϵ2

2

)
+ P

Fk(hsrm)(hsrm) − R(h) − 2Rm(Hk (h)) −
√

log k(h)

m
>

ϵ

2


= 2 exp

(
−mϵ2

2

)
+ P

[
R̂(h) − R(h) − Rm(Hk (h)) >

ϵ

2

]

= 2 exp

(
−mϵ2

2

)
+ exp

(
−mϵ2

2

)

= 3 exp

(
−mϵ2

2

)
.

5. Setting the right-hand side to δ and solving it, the proof will be completed.
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SRM Guarantee

1. This bound is similar to learning bound when k(h∗)is known!

2. Can be extended if approximation error assumed to be small or zero.

3. if H contains the Bayes classifier, only finitely many hypothesis sets need to be considered in

practice.

4. Restriction: H decomposed as countable union of families with converging Rademacher

complexity.

5. Issues:

SRM typically computationally intractable;

how should we choose Hs and h⋆?
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Cross-validation



Cross-validation

1. An alternative method for model selection is cross-validation.

2. In cross-validation, we use some fraction of training set as validation set to select a hypothesis set

Hk .

3. In cross-validation, S is divided into a sample S1 of size (1− α)m and a sample S2 of size αm,

with α ∈ (0, 1).

4. For any k ∈ N, let hS1,k
erm be the solution of ERM run on S1 using the hypothesis set Hk .

5. The hypothesis hcv returned by cross-validation is the ERM solution hS1,k
erm with the best

performance on S2.

hcv = argmin
h∈{hS1,kerm :k≥1}

R̂S2(h)

Theorem (Cross-validation bound)

For any α > 0 and any sample size m ≥ 1, we have

P

[
sup
k≥1

∣∣∣R(hS1,k
erm )− R̂(hS1,k

erm )
∣∣∣ > ϵ+

√
log k

αm

]
≤ 4 exp

(
−2αmϵ2

)
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n-Fold cross-validation



n-Fold cross-validation

1. In practice, the amount of labeled data available is often too small to set aside a validation sample.

2. Instead, a widely adopted method known as n-fold cross-validation is used to exploit the labeled

data both for model selection and for training.

3. The special case of n-fold cross-validation where n = m is called leave-one-out cross-validation.
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Regularization-based algorithms



Regularization-based algorithms

1. A broad family of algorithms inspired by the SRM method is that of regularization-based

algorithm.

2. This consists of selecting a very complex family H that is an uncountable union of nested

hypothesis sets H =
⋃

γ>0 Hγ .

3. H is often chosen to be dense in the space of continuous functions over X .

4. For example, H may be chosen to be the set of all linear functions in some high-dimensional space

and Hγ the subset of those functions whose norm is bounded by

Hγ = {X 7→ ⟨w, ϕ(x)⟩ | ∥w∥ ≤ γ}.
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Regularization-based algorithms

1. Given a labeled sample S , the extension of the SRM method to an uncountable union would then

suggest selecting h based on the following optimization problem:

hreg = argmin
γ>0,h∈Hγ

R̂(h) +R(Hγ) +

√
log γ

m

2. Often, there exists a function R : H 7→ R such that, for any γ > 0, the constrained optimization

problem argminγ>0,h∈Hγ
R̂(h) + pen(γ,m) can be equivalently written as the unconstrained

optimization problem.

hreg = argmin
h∈H

R̂(h) + λR(h)

3. λ > 0 is called regularization parameter and R(h) is called reularization term.
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Reading



Readings

1. Chapter 5 of Understanding machine learning : From theory to algorithms (Shalev-Shwartz and

Ben-David 2014).

2. Chapter 4 of Foundations of machine learning (Mohri, Rostamizadeh, and Talwalkar 2018).
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Questions?
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