
Machine learning theory

Consistency model

Hamid Beigy

Sharif University of Technology

February 13, 2023



Table of contents

1. Introduction

2. Consistency model

3. Summary

4. Formal learning model

1 / 18



Introduction



Learning model

1. To study machine learning mathematically, we need to formally define the learning problem.

2. This precise definition is called a learning model.

3. A learning model should be rich and simple.

should be rich enough to capture important aspects of real learning problems,

should be simple enough to study the problem mathematically.

4. As with any mathematical model, simplifying assumptions are unavoidable.

2 / 18



Learning model

1. A learning model should answer several important questions:

What is it that we are trying to learn?

What kind of data is available to the learner?

In what way is the data presented to the learner (online, actively, etc.)?

What type of feedback does the learner receive, if any?

What is the learner’s goal?

2. A good learning model should also be robust to minor variations in its definition.

3 / 18



Concept

Definition

1. Let Σ be a set called alphabet for describing examples and assume that Σ = {0, 1} or Σ = R.

2. Let Σn be the set of n-tuples of Σ.

3. Let Σ∗ be the set of non-empty finite strings of elements of Σ.

Definition (Domain set)

The set X ⊆ Σ∗ is called domain set or example space and its members as examples.

Definition (Concept)

A concept over the alphabet Σ is a function c : X 7→ {0, 1} and the set C = {c | c : X 7→ {0, 1}}
with its associated representation is called concept class.

Definition (Training set)

A set/sequence S = {(x1, y1), . . . , (xm, ym)} is called training set or training examples.

Definition (Positive/negative examples)

1. An example x ∈ X for which c(x) = 1 is known as a positive example.

2. An example x ∈ X for which c(x) = 0 is known as a negative example.

4 / 18



Concept

Example (Parity concept)

Let Σ = {0, 1} and define p : Σ∗ 7→ {0, 1} as follows: if x = x1x2 . . . xn, then

p(x) =

{
1 if an odd number of xi ’s are 1

0 otherwise.

This concept is known as the parity concept.

The string 1101010 is a negative example.

The string 11101010 is a positive example.

Example (Unit ball)

Let Σ = R and define u : Σn 7→ {0, 1} as follows:

u(x1x2 . . . xn) =

{
1 if x2

1 + . . .+ x2
n ≤ 1

0 otherwise.

This concept is known as the n-dimensional unit ball.

5 / 18



Consistency model



Consistency model

The consistency model is not a particularly great model of learning, but it’s simple and good to start.

Definition (Consistency model)

We say that algorithm A learns the concept class C in the consistency model if given any training set

S , the algorithm produces a hypothesis (concept) c ∈ C consistent with S if one exists, and outputs

“there is no consistent concept” otherwise.

Definition (Learnability of consistency model)

We say that a class C is learnable in the consistency model if there exists an efficient algorithm A
that learns C in the consistency model.

Here efficient means that the algorithm runs in polynomial time in terms of the size of the set S

and the size of each x ∈ S .

6 / 18



Monotone conjunctions

Example (Learnability of monotone conjunctions)

1. Let X = {0, 1}n be the set of all n-bit vectors.

2. Let the concept class C consist of all monotone conjunctions (AND of a subset of the

(unnegated) variables, such as c(x) = x2 ∧ x7 ∧ x9.

3. A sample training set is given in the following table

01101 +

11011 +

11001 +

00101 -

11000 -

4. Is any learning algorithm for learning this concept class??

we can learn this class in the consistency model by taking the bitwise AND of all of the

positive examples, then form a conjunction of all variables corresponding to the bits that

are still on.

5. For the above training set, we obtain c(x) = x2 ∧ x5.

6. Is this hypothesis consistent with the negative examples?

7. Is this algorithm efficient?

7 / 18



Conjunctions

Example (Learnability of conjunctions)

1. Let X = {0, 1}n be the set of all n-bit vectors.

2. Let the concept class C consist of all conjunctions (AND of a subset of the (possibly negated)

variables, such as c(x) = x2 ∧ x̄7 ∧ x9.

3. Is any learning algorithm for learning this concept class??

4. The best way is to reduce the problem of learning conjunctions to the problem of learning
monotone conjunctions and just use our previous algorithm such as

First, for each variable xi , introduce a new variable zi = x̄i representing its negation.

Then, we extend each n-bit example to 2n-bit by concatenating each example with its negation.

Initial training set

01101 +

11101 +

11100 +

01111 -

11000 -

Extended training set

0110110010 +

1110100010 +

1110000011 +

0111110000 -

1100000111 -

Finally, applying the monotone conjunction learning algorithm.

5. For the above training set, we obtain c(x) = x2 ∧ x3 ∧ z4 = x2 ∧ x3 ∧ x̄4.

6. Is this hypothesis consistent with the negative examples?

7. Does consistent monotone conjunction exist for these examples?

8. Is this algorithm efficient?

8 / 18



Monotone disjunctions

Example (Learnability of monotone disjunctions)

1. Let X = {0, 1}n be the set of all n-bit vectors.

2. Let the concept class C consist of all monotone disjunctions (OR of a subset of the unnegated)

variables, such as c(x) = x2 ∨ x7 ∨ x9.

3. Is any learning algorithm for learning this concept class?

4. The best way is to reduce the problem of learning monotone disjunctions to the problem of

learning monotone conjunctions and just use our previous algorithm.

5. We can use DeMorgan’s Law from logic

(x1 ∨ . . . ∨ xn) = (x̄1 ∧ . . . ∧ x̄n)

6. Then, reduce the monotone disjunction problem to the monotone conjunction problem by

Flipping all of the bits in the training set.

Flipping all labels in the training set.

Applying the monotone conjunction algorithm and finding a concept c.

Negating all of the literals in c and then negating the conjunction itself.

7. For the given training set, we obtain c(x) = x2 ∧ x3 ∧ z4 = x2 ∧ x3 ∧ x̄4.

8. Is this hypothesis consistent with the negative examples?

9. Is this algorithm correct? (prove it.)

10. Is this algorithm efficient?

9 / 18



k-CNF formulas

Example (Learnability of k-CNF formulas)

1. Let X = {0, 1}n be the set of all n-bit vectors.

2. Let the concept class C consist of all k-CNF formulas that is conjunctions of disjunctions (called

clauses) where each disjunction has at most k literals.

3. For example, for k = 2, we have c(x) = (x2 ∨ x7) ∧ (x11) ∨ (x4 ∨ x̄9).

4. Is any learning algorithm for learning this concept class?

5. The best way is to reduce this problem to the problem of learning monotone conjunctions
and just use our previous algorithm.

First, creating a new variable for every possible clause (disjunction) that could appear in our k-CNF

formula.

For example, for n = k = 2, we create

z1 = (x1)

z2 = (x2)

z3 = (x1 ∨ x2)

z4 = (x1 ∨ x̄2)

z5 = (x̄1 ∨ x2)

z6 = (x̄1 ∨ x̄2)

We converted the two-bit examples into six-bit examples.

Then, applying monotone conjunction algorithm resulting in a conjunction c of zi ’s.

Finally, converting these zi ’s into their corresponding disjunctions.

6. Is this algorithm consistent? (prove it.)

7. Is this algorithm correct? (prove it.)

8. Is this algorithm efficient?

10 / 18



k-CNF formulas

Lemma (Learnability of k-CNF formulas)

The algorithm designed for learning k-CNF formulas is not efficient.

Proof.

1. The number of zi variables equals to O
(
(2n)k

)
.

2. The number of k-CNF’s with n variables equals to (2n)(2n − 1) . . . (2n − k) = O
(
(2n)k

)
.

3. This is because each position in the k-CNF has 2n possible choices of variables, all the of xi and

their negations.

4. The algorithm is thus efficient (polynomial time) if we assume k to be a small constant but not

otherwise.

11 / 18



Axis-aligned rectangles

Example (Learnability of axis-aligned rectangles)

1. Let X = R2 be the set of all points in two-dimensional space.

2. Let the concept class C consist of all 2-D axis-aligned rectangles such as

Figure 3: Left: A dichotomy and its realization by an axis-aligned rectangle. Middle and right:
Dichotomies unrealizable by axis-aligned rectangles.

Proof Intuitively, the more complex your concept class is (i.e., the larger d is), the more examples
you need to learn a good hypothesis (because complex classes mean that data can be more irregularly dis-
tributed and can still be shattered, then you need more observations to explore this irregular distribution.).

Because the theorem does not specify the distribution D, it must hold for any unknown distribution D.
We prove the theorem by looking at a worst-case data distribution D. But before that, let’s first consider
a better distribution – D is a uniform distribution over d points {x1, ..., xd}. Because V CD(C) = d,
there must exist a set of d points {x1, ..., xd} such that no matter what labels they have, there will exist
a c 2 C assigning the same labels as their true labels. This means that all 2d possible label combinations
are realizable by C.

Assume that D is a uniform distribution over these d points {x1, ..., xd}. We also assume that the
true labels of these d points are all decided by tossing a fair coin independently (label = 1 if head, label =
0 if tail). Then each of the 2d possible label combinations has equal probability 1

2d . In addition, knowing
some of the labels will not help us guess other unseen labels better because the coins are tossed indepen-
dently, which means that a hypothesis produced from observed points will disagree with the true label of
an unseen point with probability 1/2.

Consider the following experiment: fix any PAC-learning algorithm for C and let it observe d/2
di↵erent points from {x1, ..., xd} to produce a hypothesis h. Then for any xi not observed in the al-
gorithm’s set of examples, the hypothesis disagrees with its label with probability 1/2. (Choosing d/2
does not mean that we give the algorithm restrictions. We will later show that to observe ✓(d/2)
di↵erent points the algorithm has to sample many more points.) The expected error of h on D is:Pd

i=1 Pr(xi) ⇥ (expected error on xi) � d
2 ⇥ 1

d ⇥ (expected error on unobserved xi) = d
2 ⇥ 1

d ⇥ 1
2 = 1

4 .
(d/2 is the number of unobserved points under D, 1/d is the probability of each point.)

However, 1/4 is just a lower bound of the expected error of h which normalizes all randomness. We
want to know with what probability h can achieve even smaller error than 1/4. Now we define p as the
probability that the algorithm produces h with error < 1/8. We have: 1/4  (expected error of h) =
(probability that error < 1/8) * (the error, which is < 1/8) + (probability that error � 1/8) * (the error,
which is between 1/8 and 1) < p ⇤ 1/8 + (1 � p) ⇤ 1.

Solving the above we have p < 6/7, which means w.p. > 1/7 the h will have error > 1/8 if h uses
d/2 di↵erent points. So to ensure that h has error < 1/8 w.p. > 1/7, we have to use ⌦(d/2) examples.

Now consider a worse case: D is no longer uniform distribution over {x1, ..., xd} but is extremely
uneven. Then it will be more di�cult to sample points that can explore enough the distribution. An
extreme case is that D gives x1 a probability 1�8✏, and gives the other d�1 points probability 8✏

d�1 each.

And we let the label distribution be unchanged (still 1/2d for each combination).

3

3. We can find a rectangle containing all positive examples without containing any negative
examples using the following algorithm.

Finding xmin
1 = min{x11, . . . , x1m}.

Finding xmax
1 = max{x11, . . . , x1m}.

Finding xmin
2 = min{x21, . . . , x2m}.

Finding xmax
2 = max{x21, . . . , x2m}.

Then c is the rectangle defined by points
(
xmin
1 , xmin

2

)
and

(
xmax
1 , xmax

2

)
4. Show that this rectangle is the smallest rectangle that can possibly contain all the positive

examples and none negative examples.

5. Is this algorithm consistent? (prove it.)

6. Is this algorithm correct? (prove it.)

7. Is this algorithm efficient?

12 / 18



Half hyperspaces

Example (Learnability of half hyperspaces)

1. Let X = Rn be the set of all points x = (x1, . . . , xn) in n-dimensional space.

2. Let the concept class C consist of all half hyperspaces (linear threshold functions) such as

x2

x1

⟨w
, x
⟩+

b
=
0

3. In other words, we want a weight vector w and some threshold b such that

⟨w, xi ⟩ > b if yi = 1.

⟨w, xi ⟩ < b if yi = 0.

4. Since the xi are all known, this results in a simple linear program (will be given later).

5. Is this algorithm consistent? (prove it.)

6. Is this algorithm correct? (prove it.)

7. Is this algorithm efficient?

13 / 18



2-term DNF

Example (Learnability of 2-term DNF)

1. Let X = {0, 1}n be the set of all n-bit vectors.

2. Let the concept class C consist of all 2-term DNF that is OR of two arbitrary length

conjunctions.

3. For example, we have c(x) = (x2 ∧ x7 ∧ x8) ∨ (x4 ∧ x̄9).

4. Is any learning algorithm for learning this concept class?

5. Can we reduce this problem to the problem of finding a k-CNF?

6. Informally, disjunction can be treated as multiplication and conjunction can be treated as

addition.

7. As an example, (x1 ∧ x2) ∨ (x3 ∧ x4) = (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3) .

8. This implies that we can always convert 2-term DNF’s into 2-CNF’s, but does this mean the

class is learnable?

9. We can always run our 2-CNF learning algorithm and find a consistent 2-CNF and convert this

2-CNF into a 2-term DNF (if possible).

10. But it is not possible always, because (2− term DNF ) ⊆ (2− CNF ) .

11. Is this algorithm efficient? From the fact that learning 2-CNF’s is easy, learning 2-term

DNF’s is NP-hard.

12. Here we arrive at a fundamental problem with our consistency model. It is possible for a class

C to be learnable but to have a subclass of C be unlearnable.

14 / 18



DNF

Example (Learnability of DNF)

1. Let X = {0, 1}n be the set of all n-bit vectors.

2. Let the concept class C consist of all DNF that is the OR of an arbitrary number of

arbitrary-length conjunctions.

3. For example, we have c(x) = (x2 ∧ x7 ∧ x8) ∨ (x4 ∧ x̄9) ∨ (x3 ∧ x̄5 ∧ x7).

4. Is any learning algorithm for learning this concept class?

5. Construct a clause for each positive example with a literal corresponding to the truth

value of each bit.
01101 + (x̄1 ∧ x2 ∧ x3 ∧ x̄4 ∧ x5)∨
11101 + (x1 ∧ x2 ∧ x3 ∧ x̄4 ∧ x5)∨
11100 + (x1 ∧ x2 ∧ x3 ∧ x̄4 ∧ x̄5)

01111 -

11000 -

6. This method is effective and efficient at learning a DNF that is consistent with the input.

7. But what is this DNF even useful for?

8. This example highlights a distinction between memorization and generalization.

15 / 18



Summary



Summary

The examples showed a few shortcomings of the consistency model.

1. A class C can be learnable while a subclass of C can be unlearnable.

2. The consistency model yields a concept that tells us nothing about the accuracy of the model on

new data (generalization).

3. The consistency model has a practical problem in that training data that contains noise is not

handled in a robust way.

16 / 18



Formal learning model



Formal learning model

Definition (Formal model of learning)

1. Learner’s input: the learner has access to the following:

Domain set X
Label set Y, we assume that Y = {0, 1}.
Training set S = {(x1, y1), . . . , (xm, ym)}.

2. Learner’s output: the learner a hypothesis h : X 7→ Y.

3. Data generation model D. We assume that each x ∈ X is sampled according distribution D,

which is unknown to the learning algorithm.

4. Measures of success:

Training error

R̂(h) =
1

m

m∑
i=1

I [h(xi ) ̸= c(xi )]

True error

R(h) = P
x∼D

[h(x) ̸= c(x)]

5. Information available to the learner

17 / 18



Formal learning model

Sample Space

Oracle 

Sample 
according  

Training set 

Learning Algorithm

Sample 
according  

Inductive Bias 

18 / 18



Questions?

18 / 18


	Introduction
	Consistency model
	Summary
	Formal learning model

