
Machine learning theory

Ranking

Hamid Beigy

Sharif university of technology

May 19, 2023

Table of contents

1. Introduction

2. Score-based setting

3. Boosting for ranking

4. Bipartite ranking

5. Preference-based setting

6. Extension to other loss functions

7. Summary

1 / 42

Introduction

Introduction

A complete search engine

Putting It All Together

2 / 42

Distribution of clicks (Aug. 2019)

1. The first rank has average click rate of 31.7%.

2. Only 0.78% of Google searchers clicked from the second page.

3 / 42

Introduction

1. The learning to rank problem is how to learn an ordering.

2. Application in very large datasets

search engines,

information retrieval

fraud detection

movie recommendation

Motivation for ranking

The main motivation for ranking over classification in the binary case is the limitation of resources.

1. it may be impractical or even impossible to display or process all items labeled as relevant by a

classifier.

2. we need to show more relevant ones or prioritize them.

4 / 42

Introduction

1. In applications such as search engines, ranking is more desirable than classification.

2. Problem: Can we learn to predict ranking accurately?

3. Ranking scenarios

score-based setting

preference-based setting

5 / 42

Score-based setting

Score-based setting

General supervised learning problem of ranking,

the learner receives labeled sample of pairwise preferences,

the learner outputs a scoring function h : X 7→ R.

Drawbacks

h induces a linear ordering for full

set X

does not match a query-based

scenario.

Advantages

efficient algorithms

good theory,

VC bounds,

margin bounds,

stability bounds

���������
	����������

6 / 42

Score-based setting

1. The score-based setting is defined as

X is input space.

D is unknown distribution over X × X .

f : X × X 7→ {−1, 0,+1} is target labeling function or preference function, where

f (x, x′) =

−1 if x′ ≺pref x

0 if x′ =pref x

+1 if x ≺pref x′

2. No assumption is made about the transitivity of the order induced by f .

f (x, x′) = +1 and f (x′, x′′) = +1 and f (x′′, x) = +1

3. No assumption is made about the antisymmetry of the order induced

f (x, x′) = +1 and f (x′, x) = +1 and x ̸= x′

7 / 42

Score-based setting

Definition (Learning to rank (score-based setting))

1. Learner receives S = {(x1, x′1, y1), . . . , (xm, x′m, ym)} ∈ (X × X 7→ {−1, 0,+1})m, where
(xi , x

′
i) ∼ D and yi = f (xi , x

′
i).

2. Given a hypothesis set H = {h : X 7→ R}, ranking problem consists of selecting a hypothesis

h ∈ H with small expected pairwise misranking or generalization error R(h) with respect to the

target f

R(h) = P
(x,x′)∼D

[
(f (x, x′) ̸= 0) ∧ (f (x, x′)(h(x)− h(x′)) ≤ 0)

]
3. The empirical pairwise misranking or empirical error of h is defined by

R̂(h) =
1

m

m∑
i=1

I
[
(yi ̸= 0) ∧ (yi (h(xi)− h(x′i)) ≤ 0)

]

8 / 42

Ranking by linear classification

1. A simple approach is to project instances into a vector w

2. Let to define the ranking function as

h((x1, . . . , xm)) = (⟨w, x1⟩ , . . . , ⟨w, xm⟩)

3. Then use the distance of the point to classifier ⟨w, x⟩ as the score of x.

4. We assume that yi ̸= 0, then the empirical error is defined as

R̂(h) =
1

m

m∑
i=1

I
[
(yi (h(xi)− h(x′i)) ≤ 0)

]
5. if we define h(x) = ⟨w, x⟩, we have

R̂(h) =
1

m

m∑
i=1

I
[
(yi
〈
w, (xi − x′i)

〉
≤ 0)

]
6. Then, we can use the following ERM algorithm to rank items.

w = argmin
w′

1

m

m∑
i=1

I
[
(yi
〈
w′, (xi − x′i)

〉
≤ 0)

]

9 / 42

Confidence margin in ranking

1. Assume that labels are chosen from {−1,+1}.

2. Homework: Generalize the result to the label set {−1, 0,+1}.

3. Same as classification, for any ρ > 0, empirical margin loss of a hypothesis h for pairwise ranking is

R̂ρ(h) =
1

m

m∑
i=1

Φρ(yi (h(x
′
i)− h(xi)))

where

Φρ(u) =

1 if u ≤ 0

1− u

ρ
if 0 ≤ u ≤ ρ

0 if ρ ≥ u

4. The parameter ρ > 0 can be interpreted as the confidence margin demanded from a hypothesis h.

5.4 Margin theory 93

Figure 5.6
The margin loss illustrated in red, defined with respect to margin parameter ⇢ = 0.7.

In all the results that follow, the empirical margin loss can be replaced by this

upper bound, which admits a simple interpretation: it is the fraction of the points

in the training sample S that have been misclassified or classified with confidence

less than ⇢. In other words, the upper bound is then the fraction of the points in

the training data with margin less than ⇢. This corresponds to the loss function

indicated by the blue dotted line in figure 5.6.

A key benefit of using a loss function based on �⇢ as opposed to the zero-one loss

or the loss defined by the blue dotted line of figure 5.6 is that �⇢ is 1/⇢-Lipschitz,

since the absolute value of the slope of the function is at most 1/⇢. The following

lemma bounds the empirical Rademacher complexity of a hypothesis set H after

composition with such a Lipschitz function in terms of the empirical Rademacher

complexity of H. It will be needed for the proof of the margin-based generalization

bound.

Lemma 5.7 (Talagrand’s lemma) Let �1, . . . ,�m be l-Lipschitz functions from R to R
and �1, . . . ,�m be Rademacher random variables. Then, for any hypothesis set H

of real-valued functions, the following inequality holds:

1

m
E
�

h
sup
h2H

mX

i=1

�i(�i � h)(xi))
i
 l

m
E
�

h
sup
h2H

mX

i=1

�ih(xi)
i

= l bRS(H) .

In particular, if �i = � for all i 2 [m], then the following holds:

bRS(� �H) l bRS(H) .

Proof: First we fix a sample S = (x1, . . . , xm), then, by definition,

1

m
E
�

h
sup
h2H

mX

i=1

�i(�m � h)(xi)
i

=
1

m
E

�1,...,�m�1

h
E
�m

h
sup
h2H

um�1(h) + �m(�m � h)(xm)
ii

,

10 / 42

Confidence margin in ranking

The upper bound of empirical margin loss of a hypothesis h is

R̂ρ(h) ≤
1

m

m∑
i=1

I
[
yi (h(x

′
i)− h(xi)) ≤ ρ

]

5.4 Margin theory 93

Figure 5.6
The margin loss illustrated in red, defined with respect to margin parameter ⇢ = 0.7.

In all the results that follow, the empirical margin loss can be replaced by this

upper bound, which admits a simple interpretation: it is the fraction of the points

in the training sample S that have been misclassified or classified with confidence

less than ⇢. In other words, the upper bound is then the fraction of the points in

the training data with margin less than ⇢. This corresponds to the loss function

indicated by the blue dotted line in figure 5.6.

A key benefit of using a loss function based on �⇢ as opposed to the zero-one loss

or the loss defined by the blue dotted line of figure 5.6 is that �⇢ is 1/⇢-Lipschitz,

since the absolute value of the slope of the function is at most 1/⇢. The following

lemma bounds the empirical Rademacher complexity of a hypothesis set H after

composition with such a Lipschitz function in terms of the empirical Rademacher

complexity of H. It will be needed for the proof of the margin-based generalization

bound.

Lemma 5.7 (Talagrand’s lemma) Let �1, . . . ,�m be l-Lipschitz functions from R to R
and �1, . . . ,�m be Rademacher random variables. Then, for any hypothesis set H

of real-valued functions, the following inequality holds:

1

m
E
�

h
sup
h2H

mX

i=1

�i(�i � h)(xi))
i
 l

m
E
�

h
sup
h2H

mX

i=1

�ih(xi)
i

= l bRS(H) .

In particular, if �i = � for all i 2 [m], then the following holds:

bRS(� �H) l bRS(H) .

Proof: First we fix a sample S = (x1, . . . , xm), then, by definition,

1

m
E
�

h
sup
h2H

mX

i=1

�i(�m � h)(xi)
i

=
1

m
E

�1,...,�m�1

h
E
�m

h
sup
h2H

um�1(h) + �m(�m � h)(xm)
ii

,

Let

1. D1 be marginal distribution of the first element of pairs X × X derived from D,

2. D2 be marginal distribution of the second element of pairs X × X derived from D,

3. S1 = {(x1, y1), . . . , (xm, ym)} and RD1
m (H) be the Rademacher complexity of H with respect to D1,

4. S2 = {(x′1, y1), . . . , (x′m, ym)} and RD2
m (H) be the Rademacher complexity of H with respect to D2,

11 / 42

Margin bound for ranking

1. We also have RD1
m (H) = E

[
R̂S1(H)

]
and RD2

m (H) = E
[
R̂S2(H)

]
.

2. If D is symmetric, then RD1
m (H) = RD2

m (H).

Theorem (Margin bound for ranking)

Let H be a set of real-valued functions. Fix ρ > 0, then, for any δ > 0, with probability at least

(1− δ) over the choice of a sample S of size m, each of the following holds for all h ∈ H

R(h) ≤ R̂ρ(h) +
2

ρ

(
RD1

m (H) +RD2
m (H)

)
+

√
log(1/δ)

2m

R(h) ≤ R̂ρ(h) +
2

ρ

(
R̂S1(H) + R̂S2(H)

)
+ 3

√
log(2/δ)

2m

12 / 42

Margin bound for ranking

Proof (Margin bound for ranking).

1. Consider the family of functions H̃ = {Φρ ◦ h | f ∈ H}.

2. From margin-loss bounds we have

E
[
Φρ(y [h(x

′)− h(x))
]
≤ R̂ρ(h) + 2Rm(Φρ ◦ H) +

√
log(1/δ)

2m
.

3. Since for all u ∈ R, we have I [u ≤ 0] ≤ Φρ(u), then we have

R(h) = E
[
I
[
y(h(x′)− h(x)) ≤ 0

]]
≤ E

[
Φρ(y [h(x

′)− h(x))
]

4. Hence, we can write

R(h) ≤ R̂ρ(h) + 2Rm(Φρ ◦ H) +

√
log(1/δ)

2m
.

5. Since Φρ is 1/ρ− Lipschitz , by Talagrand’s lemma Rm(Φρ ◦ H̃) ≤ 1

ρ
Rm(H).

13 / 42

Margin bound for ranking

Proof (Margin bound for ranking)(cont.).

6. Here, Rm(H) can be upper bounded as

Rm(H) =
1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σiyi (h(x
′
i)− h(xi))

]

=
1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σi (h(x
′
i)− h(xi))

]
σiyi and σi : same distribution

≤ 1

m
E
S,σ

[
sup
h∈H

m∑
i=1

σih(x
′
i) + sup

h∈H

m∑
i=1

σih(xi)

]
by sub-additivity of sup

≤ E
S

[
R̂S1(H) + R̂S2(H)

]
definition of S1 and S2

≤ RD1
m (H) +RD2

m (H).

7. The second inequality, can be derived in the same way.

These bounds can be generalized to hold uniformly for any ρ > 0 at cost of an additional term√
(log log2(2/ρ))/m.

14 / 42

Margin bound for ranking

Corollary (Margin bounds for ranking with kernel-based hypotheses)

Let K : X × X 7→ R be a PDS kernel with r = supx∈X K(x, x). Let also Φ : X 7→ H be a feature

mapping associated to K and let H =
{
x 7→ ⟨w,Φ(x)⟩

∣∣ ∥w∥H ≤ Λ
}
for some Λ ≥ 0. Fix ρ > 0.

Then, for any δ > 0, the following pairwise margin bound holds with probability at least (1− δ) for

any h ∈ H:

R(h) ≤ R̂ρ(h) + 4

√
r 2Λ2/ρ2

m
+

√
log(1/δ)

2m

1. This bound can be generalized to hold uniformly for any ρ > 0 at cost of an additional term√
(log log2(2/ρ))/m.

2. This bound suggests that a small generalization error can be achieved

when ρ
r
is large (small second term),

while the empirical margin loss is relatively small (first term).

15 / 42

Ranking with SVM

From the generalization bound for SVM, Corollary Margin bounds for ranking with kernel-based

hypotheses can be expressed as

Corollary (Margin bounds for ranking with SVM)

Let K : X × X 7→ R be a PDS kernel with r = supx∈X K(x, x). Let also Φ : X 7→ H be a feature

mapping associated to K and let H =
{
x 7→ ⟨w,Φ(x)⟩

∣∣ ∥w∥H ≤ Λ
}
for some Λ ≥ 0. Then, for any

δ > 0, the following pairwise margin bound holds with probability at least (1− δ) for any h ∈ H:

R(h) ≤ 1

m

m∑
i=1

ξi + 4

√
r 2Λ2

m
+

√
log(1/δ)

2m

where ξ = max (1− yi [Φ(x
′
i)− Φ(xi)] , 0)

16 / 42

Ranking with SVMs

1. Margin bounds for ranking with SVM

R(h) ≤ 1

m

m∑
i=1

ξi + 4

√
r 2Λ2

m
+

√
log(1/δ)

2m

2. Minimizing the right-hand side of this inequality is

minimizing an objective function with a term corresponding to the sum of the slack variables ξi ,

and another one minimizing ∥w∥ or equivalently ∥w∥2.

3. This optimization problem can thus be formulated as

min
w,ξ

1

2
∥w∥2 + C

m∑
i=1

ξi

subject to yi
[〈
w,
(
Φ(x′i)− Φ(xi)

)〉]
≥ 1− ξi

ξi ≥ 0 ∀1 ≤ i ≤ m.

17 / 42

Ranking with SVMs

1. This optimization problem coincides exactly with the primal optimization problem of SVMs, with

a feature mapping

Ψ : X × X 7→ H

defined by

Ψ(x, x′) = Φ(x)− Φ(x′)

for all

(x, x′) ∈ X × X

and with a hypothesis set of functions of the form

(x, x′) 7→
〈
w,Ψ(x, x′)

〉
.

2. Clearly, all the properties already presented for SVMs apply in this instance.

3. In particular, the algorithm can benefit from the use of PDS kernels.

4. This can be used with kernels

K ′((xi , x
′
i), (xj , x

′
j)) =

〈
Ψ(xi , x

′
i),Ψ(xj , x

′
j)
〉

= K(xi , xj) + K(x′i , x
′
j)− K(x′i , xj)− K(xi , x

′
j).

18 / 42

Boosting for ranking

Boosting for ranking

Use weak ranking algorithm and create stronger ranking algorithm:

Ensemble method: combine base rankers returned by weak ranking algorithm

Finding simple relatively accurate base rankers often not hard.

How should base rankers be combined?

Let H defined as

H = {h : X 7→ {0, 1}}

where H is the hypothesis set from which the base rankers are selected.

For any s ∈ {−1, 0,+1}, we define

ϵst =
m∑
i=1

Dt(i) I
[
yi (ht(x

′
i)− ht(xi)) = s

]
= E

i∼Dt

[
I
[
yi (ht(x

′
i)− ht(xi)) = s

]]

Hence, we have

ϵ+t + ϵ−t + ϵ0t = 1

We assume that yi ̸= 0.

Homework: Show that the derivation of the algorithm.

19 / 42

Boosting for ranking

RankBoost Algorithm

1: function RankBoost(S , H, T)

2: for i ← 1 to m do

3: D1(i)←
1

m
4: end for

5: for t ← 1 to T do

6: Let ht = argminh∈H

(
ϵ−t − ϵ+t

)
▷ ϵ− : pairwise ranking error

▷ ϵ+ : pairwise ranking accuracy

7: αt ←
1

2
log

ϵ+t
ϵ−t

8: Zt ← ϵ0t + 2
√

ϵ+t ϵ
−
t

9: for i ← 1 to m do

10: Dt+1(i)←
Dt(i) exp [−αtyi (ht(x

′
i)− ht(xi))]

Zt
11: end for

12: end for

13: return f ≜
∑T

t=1 αtht

14: end function

20 / 42

Bound on the empirical error of RankBoost

Theorem (Bound on the empirical error of RankBoost)

The empirical error of the hypothesis H = {h : X 7→ {0, 1}} returned by RankBoost verifies:

R̂(h) ≤ exp

[
−2

T∑
t=1

(
ϵ+t − ϵ−t

2

)2
]

Furthermore, if there exists γ such that for all 1 ≤ t ≤ T , condition 0 ≤ γ ≤ ϵ+t − ϵ−t
2

, then

R̂(h) ≤ exp
[
−2γ2T

]
.

21 / 42

Bound on the empirical error of RankBoost

Proof of (Bound on the empirical error of RankBoost).

1. The empirical error equals to R̂(h) =
1

m

∑m
i=1 I [yi (f (x

′
i)− f (xi)) ≤ 0].

2. On the other hand, for all u ∈ R, we have I [u ≤ 0] ≤ exp(−u).150 Chapter 7 Boosting

Figure 7.3
Visualization of the zero-one loss (blue) and the convex and di↵erentiable upper bound on the
zero-one loss (red) that is optimized by AdaBoost.

accuracy and defines a solution based on these values. This is the source of the

extended name of AdaBoost: adaptive boosting .

The proof of theorem 7.2 reveals several other important properties. First, observe

that ↵t is the minimizer of the function ' : ↵ 7! (1 � ✏t)e
�↵ + ✏te

↵. Indeed, ' is

convex and di↵erentiable, and setting its derivative to zero yields:

'0(↵) = �(1� ✏t)e
�↵ + ✏te

↵ = 0, (1� ✏t)e
�↵ = ✏te

↵ , ↵ =
1

2
log

1� ✏t
✏t

. (7.5)

Thus, ↵t is chosen to minimize Zt = '(↵t) and, in light of the bound bRS(f) QT
t=1 Zt shown in the proof, these coe�cients are selected to minimize an upper

bound on the empirical error. In fact, for base classifiers whose range is [�1, +1]

or R, ↵t can be chosen in a similar fashion to minimize Zt, and this is the way

AdaBoost is extended to these more general cases.

Observe also that the equality (1 � ✏t)e
�↵t = ✏te

↵t just shown in (7.5) implies

that at each iteration, AdaBoost assigns equal distribution mass to correctly and

incorrectly classified instances, since (1� ✏t)e
�↵t is the total distribution assigned

to correctly classified points and ✏te
↵t that of incorrectly classified ones. This

may seem to contradict the fact that AdaBoost increases the weights of incorrectly

classified points and decreases that of others, but there is in fact no inconsistency:

the reason is that there are always fewer incorrectly classified points, since the base

classifier’s accuracy is better than random.

7.2.2 Relationship with coordinate descent
AdaBoost was originally designed to address the theoretical question of whether

a weak learning algorithm could be used to derive a strong learning one. Here,

3. Hence, we can write

R̂(h) =
1

m

m∑
i=1

I
[
yi (f (x

′
i)− f (xi)) ≤ 0

]
≤ 1

m

m∑
i=1

exp
[
−yi (f (x′i)− f (xi))

]
≤ 1

m

m∑
i=1

[
m

T∏
t=1

Zt

]
Dt+1(i) =

T∏
t=1

Zt .

22 / 42

Bound on the empirical error of RankBoost

Proof of (Bound on the empirical error of RankBoost) (cont.).

4. From definition of

Zt =
m∑
i=1

Dt(i)exp
[
−yi (ht(x′i)− ht(xi))

]
,

5. By grouping together the indices i for which yi (ht(x
′
i)− ht(xi)) take values in −1, 0, or +1, Zt

can be written as

Zt = ϵ+t e
−αt + ϵ−t e

+αt + ϵ0t

= ϵ+t

√
ϵ−t
ϵ+t

+ ϵ−t

√
ϵ+t
ϵ−t

+ ϵ0t

= 2

√
ϵ+t ϵ

−
t + ϵ0t

6. Since, ϵ+t = 1− ϵ−t − ϵ0t , we have

4ϵ+t ϵ
−
t =

(
ϵ+t + ϵ−t

)2 − (ϵ+t − ϵ−t
)2

=
(
1− ϵ0t

)2
−
(
ϵ+t − ϵ−t

)2

23 / 42

Bound on the empirical error of RankBoost

Proof of (Bound on the empirical error of RankBoost) (cont.).

7. Thus, assuming that ϵ0t < 1, Zt can be upper bounded as

Zt =

√
(1− ϵ0t)

2 −
(
ϵ+t − ϵ−t

)2
+ ϵ0t =

(
1− ϵ0t

)√√√√1−
(
ϵ+t − ϵ−t

)2
(1− ϵ0t)

2 + ϵ0t

≤
(
1− ϵ0t

)
exp

(
−
(
ϵ+t − ϵ−t

)2
2 (1− ϵ0t)

2

)
+ ϵ0t By using inequality 1− x ≤ e−x

≤ exp

(
−
(
ϵ+t − ϵ−t

)2
2

)
exp is concave and 0 <

(
1− ϵ0t

)
≤ 1

≤ exp

(
−2

[(
ϵ+t − ϵ−t

)
2

]2)

8. By setting 0 ≤ γ ≤ ϵ+t − ϵ−t
2

, we obtain R̂(h) ≤ exp
[
−2γ2T

]
.

24 / 42

Margin bound for ensemble methods in ranking

1. Assume that the pairwise labels are in {−1,+1}.

2. We showed that R̂S(conv(H)) = R̂S(H).

Corollary (Margin bound for ensemble methods in ranking)

Let H be a set of real-valued functions. Fix ρ > 0; then, for any δ > 0, with probability at least

(1− δ) over the choice of a sample S of size m, each of the following ranking guarantees holds for all

h ∈ conv(H)

R(h) ≤ R̂ρ(h) +
2

ρ

(
RD1

m (H) +RD2
m (H)

)
+

√
log(1/δ)

2m

R(h) ≤ R̂ρ(h) +
2

ρ

(
R̂S1(H) + R̂S2(H)

)
+ 3

√
log(2/δ)

2m

3. These bounds apply to h/ ∥α∥1, where h and h/ ∥α∥1 induce the same ordering.

4. Then, or any δ > 0, the following holds with probability at least (1− δ)

R(h) ≤ R̂ρ(h/ ∥α∥1) +
2

ρ

(
RD1

m (H) +RD2
m (H)

)
+

√
log(1/δ)

2m

5. Note that T does not appear in this bound.

25 / 42

Bipartite ranking

Bipartite ranking

1. Bipartite ranking problem is an important ranking scenario within score-based setting.

2. In this scenario, the set of points X is partitioned into

the class of positive points X+

the class of negative points X−

3. In this setting, positive points must rank higher than negative ones and the learner receives

a sample S+ = (x′1, . . . , x
′
m) drawn i.i.d. according to some distribution D+ over X+ ,

a sample S− = (x1, . . . , xn) drawn i.i.d. according to some distribution D− over X−.

�	���������
	����������

26 / 42

Bipartite ranking

1. The learning problem consists of selecting a hypothesis h ∈ H with small expected bipartite

misranking or generalization error R(h) :

R(h) = P
x′∼D+
x∼D−

[
h(x′) < h(x)

]
2. The empirical pairwise mis-ranking or empirical error of h is

R̂S+,S−(h) =
1

mn

m∑
i=1

n∑
j=1

I
[
h(x′i) < h(xj)

]
3. The learning algorithm must typically deal with mn pairs.

27 / 42

Boosting for bipartite ranking

1. A key property of RankBoost leading to an efficient algorithm for bipartite ranking is exponential

form of its objective function.

2. The objective function can be decomposed into the product of two functions,

one depends on only the positive points.

one depends on only the negative points.

3. Similarly,

D1(i , j) =
1

mn

= D+
1 (i)D

−
1 (j)

=
1

m
× 1

n

4. Similarly,

Dt+1(i , j) =
Dt(i , j) exp (−αt [ht(x

′
i)− ht(xj)])

Zt

=
D+

t (i) exp (−αtht(x
′
i))

Z+
t

× D−
t (j) exp (αtht(xj))

Z−
t

28 / 42

Boosting for bipartite ranking

1. The pairwise misranking of a hypothesis h(
ϵ−t − ϵ+t

)
= E

(i,j)∼Dt

[
h(x′i)− h(xj)

]
= E

i∼D+
t

[
E

j∼D−
t

[
h(x′i)− h(xj)

]]
= E

j∼D+
t

[
h(x′j)

]
− E

i∼D−
t

[h(xi)]

2. The time and space complexity of BipartiteRankBoost is O(m + n).

29 / 42

Boosting for bipartite ranking

BipartiteRankBoost Algorithm

1: function BipartiteRankBoost(S, H, T)

2: D+
1 (i)←

1

m
∀i ∈ 1, 2, . . . ,m

3: D−
1 (j)←

1

n
∀j ∈ 1, 2, . . . , n

4: for t ← 1 to T do

5: Let ht = argminh∈H

(
ϵ−t − ϵ+t

)
6: αt ←

1

2
log

ϵ+t

ϵ−t

7: Z+
t ← 1− ϵ+t +

√
ϵ+t ϵ

−
t

8: for i ← 1 to m do

9: D+
t+1(i)←

D+
t (i) exp

[
−αtht(x′i)

]
Z+
t

10: end for

11: Z−
t ← 1− ϵ−t +

√
ϵ+t ϵ

−
t

12: for j ← 1 to n do

13: D−
t+1(j)←

D−
t (j) exp

[
αtht(xj)

]
Z−
t

14: end for

15: end for

16: return f ≜
∑T

t=1 αtht
17: end function

30 / 42

RankBoost vs. AdaBoost

1. The objective function of RankBoost can be expressed as

FRankBoost(α) =
m∑
j=1

n∑
i=1

exp
(
−
[
f (x ′

j)− f (xj)
])

=

(
m∑
i=1

exp

(
−

T∑
t=1

αtht(x
′
i)

))(
n∑

j=1

exp

(
T∑
t=1

αtht(xj)

))
= F+(α)F−(α)

where F+(α) denotes function defined by the sum over positive points and F−(α) function defined

over negative points.

2. The objective function of AdaBoost can be expressed as

FAdaBoost(α) =
m∑
j=1

exp
(
−y ′

j f (x
′
j)
)
+

n∑
i=1

exp (−yi f (xi))

=
m∑
i=1

exp

(
−

T∑
t=1

αtht(x
′
i)

)
+

n∑
j=1

exp

(
T∑
t=1

αtht(xj)

)
= F+(α) + F−(α)

31 / 42

Area under the ROC curve

1. Performance of a bipartite ranking algorithm is reported in terms of area ROC curve, or AUC.

2. Let U be a test sample used for evaluating the performance of h

m positive points z′1, . . . , z
′
m

n negative points z1, . . . , zn

AUC(h, u) equals to

AUC(h,U) =
1

mn

m∑
i=1

n∑
j=1

I
[
h(z′i) ≥ h(zj)

]
= P

z∼D
−
U

z′∼D+
U

[
h(z′) ≥ h(z)

]

10.5 Bipartite ranking 255

pageMehryar Mohri - Foundations of Machine Learning

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

AUC

.2

.4

0 .2 .4 .6 .8 1

.6

.8

1

0

Figure 10.3
The AUC (area under the ROC curve) is a measure of the performance of a bipartite ranking.

function FRankBoost. In general, FAdaBoost does not admit a minimizer. Never-

theless, it can be shown that if limk!1 FAdaBoost(↵k) = inf↵ FAdaBoost(↵) for

some sequence (↵k)k2N, then, under the same assumption on the use of a con-

stant base hypothesis and for a non-linearly separable dataset, the following holds:

limk!1 FRankBoost(↵k) = inf↵ FRankBoost(↵).

The connections between AdaBoost and RankBoost just mentioned suggest that

AdaBoost could achieve a good ranking performance as well. This is often observed

empirically, a fact that brings strong support to the use of AdaBoost both as a

classifier and a ranking algorithm. Nevertheless, RankBoost may converge faster

and achieve a good ranking faster than AdaBoost.

10.5.2 Area under the ROC curve
The performance of a bipartite ranking algorithm is typically reported in terms of

the area under the receiver operating characteristic (ROC) curve, or the area under

the curve (AUC) for short.

Let U be a test sample used to evaluate the performance of h (or a training

sample) with m positive points z01, . . . , z
0
m and n negative points z1, . . . , zn. For

any h 2 H, let bR(h, U) denote the average pairwise misranking of h over U . Then,

the AUC of h for the sample U is precisely 1� bR(h, U), that is, its average pairwise

ranking accuracy on U :

AUC(h, U) =
1

mn

mX

i=1

nX

j=1

1h(z0
i)�h(zj) = P

z⇠bD�
U

z0⇠bD+
U

[h(z0) � h(z)].

Here, bD+
U denotes the empirical distribution corresponding to the positive points in

U and bD+
U the empirical distribution corresponding to the negative ones. AUC(h, U)

3. The average pairwise misranking of h over U denoted by R̂(h,U)

R̂(h,U) = 1− AUC(h,U).

4. AUC can be computed in time of O(m + n) from a sorted array h(z′i) and h(zj).

5. Homework: Design an algorithm for computing AUC in time of O(m + n).

32 / 42

Preference-based setting

Preference-based setting

1. Assume that you receive a list X ⊆ X as a result of a query q.

2. The goal is to rank items in list X not all items in X .

3. The advantage of preference-based setting over score-based setting is:

The learning algorithm is not required to return a linear ordering of all points of X , which
may be impossible.

4. The preference-based setting consists of two stages.

A sample of labeled pairs S is used to learn a preference function h : X × X 7→ [0, 1].

Given list X ⊆ X , the preference function h is used to determine a ranking of X .

5. How can h be used to generate an accurate ranking?

6. The computational complexity of the second stage is also crucial.

7. We will measure the time complexity in terms of the number of calls to h.

33 / 42

Second-stage ranking problem

1. Assume that a preference function h is given.

2. h is not assumed to be transitive.

3. We assume that h is pairwise consistent, that is

h(u, v) + h(v , u) = 1, ∀u, v ∈ X

4. Let D be an unknown distribution according to which pairs (X , σ∗) are drawn, where

X ⊆ X is a query subset.

σ∗ is a target ranking.

5. The objective of a second-stage algorithm A is using function h to return an accurate ranking

A(X) for any query subset X .

6. The algorithm A may be deterministic or randomized.

34 / 42

Second-stage ranking problem

1. Loss function ℓ is used to measure disagreement between target ranking σ∗ and ranking σ for set

X with n ≥ 1 elements.

ℓ(σ, σ∗) =
2

n(n − 1)

∑
u ̸=v

I [σ(u) < σ(v)] I [σ∗(v) < σ∗(u)]

2. Loss between target ranking σ∗ and ranking h equals to

ℓ(h, σ∗) =
2

n(n − 1)

∑
u ̸=v

h(u, v) I [σ∗(v) < σ∗(u)]

35 / 42

Second-stage ranking problem

The expected loss for a deterministic algorithm A is

E
(X ,σ∗)∼D

[ℓ(A(X), σ∗)] .

Regret of algorithm A is the difference between its loss and loss of the best fixed global ranking.

Regret(A) = E
(X ,σ∗)∼D

[ℓ(A(X), σ∗)]−min
σ′ E

(X ,σ∗)∼D

[
ℓ(σ′

|X , σ
∗)
]

Regret of the preference function is

Regret(h) = E
(X ,σ∗)∼D

[
ℓ(h|X , σ

∗)
]
−min

h′
E

(X ,σ∗)∼D

[
ℓ(h′

|X , σ
∗)
]

36 / 42

Second-stage ranking problem

1. For sort by degree algorithm A, we can prove

Regret(A) ≤ 2Regret(h)

Theorem (Lower bound for deterministic algorithms)

For any deterministic algorithm A, there is a bipartite distribution for which

Regret(A) ≥ 2Regret(h)

2. Homework: Prove the above theorem.

37 / 42

Second-stage ranking problem

1. The second stage use a straightforward extension of the randomized QuickSort algorithm.
10.6 Preference-based setting 261

pageMehryar Mohri - Foundations of Machine Learning

Randomized QS

left recursion right recursion

random
pivot

u

v

h(v, u) h(u, v)

Figure 10.6
Illustration of randomized QuickSort based on a preference function h (not necessarily transitive).

the standard version of QuickSort, here the comparison function is based on the

preference function, which in general is not transitive. Nevertheless, it can be shown

here, too, that the expected time complexity of the algorithm is in O(n log n) when

applied to an array of size n.

The algorithm works as follows, as illustrated by figure 10.6. At each recursive

step, a pivot element u is selected uniformly at random from X. For each v 6= u, v

is placed on the left of u with probability h(v, u) and to its right with the remaining

probability h(u, v). The algorithm proceeds recursively with the array to the left of

u and the one to its right and returns the concatenation of the permutation returned

by the left recursion, u, and the permutation returned by the right recursion.

Let AQuickSort denote this algorithm. In the bipartite setting, the following guar-

antees can be proven:

E
X,�⇤,s

[L(AQuickSort(X, s),�⇤)] = E
X,�⇤

[L(h,�⇤)] (10.33)

Reg(AQuickSort) Reg(h) . (10.34)

Thus, here, the factor of two of the bounds in the deterministic case has vanished,

which is substantially more favorable. Furthermore, the guarantee for the loss

is an equality. Moreover, the expected time complexity of the algorithm is only

in O(n log n), and, if only the top k items are needed to be ranked, as in many

applications, the time complexity is reduced to O(n + k log k).

For the QuickSort algorithm, the following guarantee can also be proven in the

case of general ranking setting (not necessarily bipartite setting):

E
X,�⇤,s

[L(AQuickSort(X, s),�⇤)] 2 E
X,�⇤

[L(h,�⇤)]. (10.35)

2. For randomized quick sort(RQS), we can prove

Regret(ARQS) ≤ Regret(h)

3. Homework: Prove the above bound.

4. Homework: Calculate the computation time of this algorithm.

38 / 42

Extension to other loss functions

Extension to other loss functions

1. All of the results just presented hold for a broader class of loss functions Lw defined in terms of a

weight function w .

Lw (σ, σ
∗) =

2

n(n − 1)

∑
u ̸=v

w(σ∗(v)− σ∗(u)) I [σ(u) < σ(v)] I [σ∗(v) < σ∗(u)]

2. Function w is assumed to satisfy the following three natural axioms:

Symmetry w(i , j) = w(j , i) for all i , j .

Monotonicity w(i , j) ≤ w(i , k) if either i < j < k or i > j > k.

Triangle inequality w(i , j) ≤ w(i , k) + w(k, j).

3. Using different functions w , the family of functions Lw can cover several familiar and important

losses.

39 / 42

Summary

Summary

We defined ranking problem.

We extend this by using other loss functions defined in terms of a weight function.

We can extend this by using other criteria have been introduced in information retrieval such as

NDCG , P@n.

40 / 42

Readings

1. Sections 17.4 and 17.5 of Shai Shalev-Shwartz and Shai Ben-David (2014). Understanding

machine learning: From theory to algorithms. Cambridge University Press.

2. Chapter 10 of Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of

Machine Learning. Second Edition. MIT Press.

3. The interested reader is referred to Hang11 .

41 / 42

References

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine

Learning. Second Edition. MIT Press.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning: From theory

to algorithms. Cambridge University Press.

42 / 42

Questions?

42 / 42

	Introduction
	Score-based setting
	Boosting for ranking
	Bipartite ranking
	Preference-based setting
	Extension to other loss functions
	Summary

