Machine learning theory

Regression

Hamid Beigy

Sharif university of technology

May 27, 2023

- 1. Introduction
- 2. Generalization bounds
- 3. Pseudo-dimension bounds
- 4. Regression algorithms
- 5. Summary
- 6. References

Introduction

- 1. Let \mathcal{X} denote the input space and \mathcal{Y} a measurable subset of \mathbb{R} and \mathcal{D} be a distribution over $\mathcal{X} \times \mathcal{Y}$.
- 2. Learner receives sample $S = \{(x_1, y_m), \dots, (x_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ drawn i.i.d. according to \mathcal{D} .
- 3. Let $L : \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}_+$ be the loss function used to measure the magnitude of error.
- 4. The most used loss function is
 - L_2 defined as $L(y, y') = |y' y|^2$ for all $y, y' \in \mathcal{Y}$.
 - L_p defined as $L(y, y') = |y' y|^p$ for all $p \ge 1$ and $y, y' \in \mathcal{Y}$.

The regression problem is defined as

Definition (Regression problem)

Given a hypothesis set $H = \{h : \mathcal{X} \mapsto \mathcal{Y} \mid h \in H\}$, regression problem consists of using labeled sample *S* to find a hypothesis $h \in H$ with small generalization error $\mathbf{R}(h)$ respect to target *f*:

$$\mathbf{R}(h) = \mathop{\mathbb{E}}_{(x,y)\sim\mathcal{D}} \left[L(h(x), y) \right]$$

The empirical loss or error of $h \in H$ is denoted by

$$\hat{\mathbf{R}}(h) = \frac{1}{m} \sum_{i=1}^{m} L(h(x_i), y_i)$$

If $L(y, y) \leq M$ for all $y, y' \in \mathcal{Y}$, problem is called bounded regression problem.

Generalization bounds

Theorem (Generalization bounds for finite hypothesis sets)

Let $L \leq M$ be a bounded loss function and the hypothesis set H is finite. Then, for any $\delta > 0$, with probability at least $(1 - \delta)$, the following inequality holds for all $h \in H$

$$\mathbf{R}(h) \leq \mathbf{\hat{R}}(h) + M \sqrt{rac{\log|H| + \log rac{1}{\delta}}{2m}}.$$

Proof (Generalization bounds for finite hypothesis sets).

By Hoeffding's inequality, since $L \in [0, M]$, for any $h \in H$, the following holds

$$\mathbb{P}\left[\mathbf{R}(h) - \hat{\mathbf{R}}(h) > \epsilon\right] \le \exp\left(-2\frac{m\epsilon^2}{M^2}\right).$$

Thus, by the union bound, we can write

$$\mathbb{P}\left[\exists h \in H \mid \mathbf{R}(h) - \hat{\mathbf{R}}(h) > \epsilon\right] \leq \sum_{h \in H} \mathbb{P}\left[\mathbf{R}(h) - \hat{\mathbf{R}}(h) > \epsilon\right]$$
$$\leq |H| \exp\left(-2\frac{m\epsilon^2}{M^2}\right).$$

Setting the right-hand side to be equal to δ , the theorem will proved.

Theorem (Rademacher complexity of μ -Lipschitz loss functions)

Let $L \leq M$ be a bounded loss function such that for any fixed $y' \in \mathcal{Y}$, L(y, y') is μ -Lipschitz for some $\mu > 0$. Then for any sample $S = \{(x_1, y_m), \dots, (x_m, y_m)\}$, the upper bound of the Rademacher complexity of the family $\mathcal{G} = \{(x, y) \mapsto L(h(x), y) \mid h \in H\}$ is

 $\hat{\mathcal{R}}(\mathcal{G}) \leq \mu \hat{\mathcal{R}}(H).$

Lemma (Talagrand's Lemma (special case))

Let ϕ be a μ -Lipschitz function from \mathbb{R} to \mathbb{R} and $\sigma_1, \ldots, \sigma_m$ be Rademacher random variables. Then, for any hypothesis set H of real-valued functions, the following inequality holds:

 $\hat{\mathcal{R}}(\phi \circ H) \leq \mu \hat{\mathcal{R}}(H).$

Proof (Rademacher complexity of μ **-Lipschitz loss functions).**

Since for any fixed y_i , L(y, y') is μ -Lipschitz for some $\mu > 0$, by Talagrand's Lemma, we can write

$$egin{aligned} \hat{\mathcal{R}}(\mathcal{G}) &= rac{1}{m} \mathop{\mathbb{E}}\limits_{\sigma} \left[\sum_{i=1}^m \sigma_i L(h(x_i), y_i)
ight] \ &\leq rac{1}{m} \mathop{\mathbb{E}}\limits_{\sigma} \left[\sum_{i=1}^m \sigma_i \mu h(x_i)
ight] \ &= \mu \hat{\mathcal{R}}(\mathcal{H}). \end{aligned}$$

Theorem (Rademacher complexity of L_p loss functions)

Let $p \ge 1$ and $\mathcal{G} = \{\mathbf{x} \mapsto |h(x) - f(x)|^p \mid h \in H\}$ and $|h(x) - f(x)| \le M$ for all $x \in \mathcal{X}$ and $h \in H$. Then for any sample $S = \{(x_1, y_m), \dots, (x_m, y_m)\}$, the following inequality holds

$$\hat{\mathcal{R}}(\mathcal{G}) \leq p M^{p-1} \hat{\mathcal{R}}(H).$$

Proof (Rademacher complexity of L_p **loss functions).**

Let $\phi_p : x \mapsto |x|^p$, then $\mathcal{G} = \{\phi_p \circ h \mid h \in H'\}$ where $H' = \{\mathbf{x} \mapsto h(x) - f(x) \mid h \in H\}$. Since ϕ_p is pM^{p-1} -Lipschitz over [-M, M], we can apply Talagrand's Lemma,

 $\hat{\mathcal{R}}(\mathcal{G}) \leq p M^{p-1} \hat{\mathcal{R}}(H').$

Now, $\hat{\mathcal{R}}(H')$ can be expressed as

$$\hat{\mathcal{R}}(H') = \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[\sup_{h \in H} \sum_{i=1}^{m} (\sigma_i h(\mathbf{x}_i) + \sigma_i f(\mathbf{x}_i)) \right]$$
$$= \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[\sup_{h \in H} \sum_{i=1}^{m} \sigma_i h(\mathbf{x}_i) \right] + \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[\sum_{i=1}^{m} \sigma_i f(\mathbf{x}_i) \right] = \hat{\mathcal{R}}(H)$$

Since $\mathbb{E}_{\sigma}\left[\sum_{i=1}^{m} \sigma_{i} f(\mathbf{x}_{i})\right] = \sum_{i=1}^{m} \mathbb{E}_{\sigma}\left[\sigma_{i}\right] f(\mathbf{x}_{i}) = 0.$

Theorem (Rademacher complexity regression bounds)

Let $0 \le L \le M$ be a bounded loss function such that for any fixed $y' \in \mathcal{Y}$, L(y, y') is μ -Lipschitz for some $\mu > 0$. Then,

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\mathcal{L}(h(x),y)\right] \leq \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(h(x_i),y_i) + 2\mu \mathcal{R}_m(H) + M \sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$
$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\mathcal{L}(h(x),y)\right] \leq \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(h(x_i),y_i) + 2\mu \hat{\mathcal{R}}(H) + 3M \sqrt{\frac{\log\frac{1}{\delta}}{2m}}.$$

Proof (Rademacher complexity of μ -Lipschitz loss functions).

Since for any fixed y_i , L(y, y') is μ -Lipschitz for some $\mu > 0$, by Talagrand's Lemma, we can write

$$egin{aligned} \hat{\mathcal{R}}(\mathcal{G}) &= rac{1}{m} \mathop{\mathbb{E}}\limits_{\sigma} \left[\sum_{i=1}^m \sigma_i L(h(x_i), y_i)
ight] \ &\leq rac{1}{m} \mathop{\mathbb{E}}\limits_{\sigma} \left[\sum_{i=1}^m \sigma_i \mu h(x_i)
ight] \ &= \mu \hat{\mathcal{R}}(H). \end{aligned}$$

Combining this inequality with general Rademacher complexity learning bound completes proof.

Pseudo-dimension bounds

1. VC dimension is a measure of complexity of a hypothesis set.

Definition (VC-dimension)

The Vapnik-Chervonenkis (VC) dimension of *H*, denoted as VC(H), is the cardinality *d* of the largest set *S* shattered by *H*. If arbitrarily large finite sets can be shattered by *H*, then $VC(H) = \infty$.

- 2. We define shattering for families of real-valued functions.
- 3. Let \mathcal{G} be a family of loss functions associated to some hypothesis set H, where

$$\mathcal{G} = \{z = (x, y) \mapsto L(h(x), y) \mid h \in H\}$$

Definition (Shattering)

Let \mathcal{G} be a family of functions from a set \mathcal{Z} to \mathbb{R} . A set $\{z_1, \ldots, z_m\} \in (\mathcal{X} \times \mathcal{Y})$ is said to be shattered by \mathcal{G} if there exists $t_1, \ldots, t_m \in \mathbb{R}$ such that

$$\left\{ \begin{bmatrix} \operatorname{sgn} (g(z_1) - t_1) \\ \operatorname{sgn} (g(z_2) - t_2) \\ \vdots \\ \operatorname{sgn} (g(z_m) - t_m) \end{bmatrix} \middle| g \in \mathcal{G} \right\} = 2^m$$

When they exist, the threshold values t_1, \ldots, t_m are said to witness the shattering.

In other words, S is shattered by \mathcal{G} , if there are real numbers t_1, \ldots, t_m such that for $b \in \{0, 1\}^m$, there is a function $g_b \in \mathcal{G}$ with sgn $(g_b(\mathbf{x}_i) - t_i) = b_i$ for all $1 \le i \le m$.

- 1. Thus, $\{z_1, \ldots, z_m\}$ is shattered if for some witnesses t_1, \ldots, t_m , the family of functions \mathcal{G} is rich enough to contain a function going
 - above a subset A of the set of points $\mathcal{J} = \{(z_i, t_i) \mid 1 \leq i \leq m\}$ and
 - below the others $\mathcal{J} A$, for any choice of the subset A.

2. For any $g \in \mathcal{G}$, let B_g be the indicator function of the region below or on the graph of g, that is

 $B_g(\mathbf{x}, y) = \operatorname{sgn}(g(\mathbf{x}) - y).$

3. Let $B_{\mathcal{G}} = \{B_g \mid g \in \mathcal{G}\}.$

1. The notion of shattering naturally leads to definition of pseudo-dimension.

Definition (Pseudo-dimension)

Let \mathcal{G} be a family of functions from \mathcal{Z} to \mathbb{R} . Then, the pseudo-dimension of \mathcal{G} , denoted by $Pdim(\mathcal{G})$, is the size of the largest set shattered by \mathcal{G} . If no such maximum exists, then $Pdim(\mathcal{G}) = \infty$.

2. $Pdim(\mathcal{G})$ coincides with VC of the corresponding thresholded functions mapping \mathcal{X} to $\{0,1\}$.

$$Pdim(\mathcal{G}) = VC\left(\{(x,t) \mapsto \mathbb{I}\left[(g(x) - t) > 0\right] \mid g \in \mathcal{G}\}\right)$$

3. Thus $Pdim(\mathcal{G}) = d$, if there are real numbers t_1, \ldots, t_d and 2^d functions g_b that achieves all possible below/above combinations w.r.t t_i .

Theorem (Composition with non-decreasing function)

Suppose \mathcal{G} is a class of real-valued functions and $\sigma : \mathbb{R} \mapsto \mathbb{R}$ is a non-decreasing function. Define $\sigma(\mathcal{G}) = \{\sigma \circ g \mid g \in \mathcal{G}\}$. Then

 $Pdim(\sigma(\mathcal{G})) \leq Pdim(\mathcal{G}).$

Proof (Pseudo-dimension of hyperplanes).

- 1. For $d \leq Pdim(\sigma(\mathcal{G}))$, suppose set $\{\sigma \circ g_b \mid b \in \{0,1\}^d\} \subseteq \sigma(\mathcal{G})$ shatters a set $\{\mathbf{x}_1, \ldots, \mathbf{x}_d\} \subseteq \mathcal{X}$ witnessed by (t_1, \ldots, t_d) .
- 2. By suitably relabeling g_b , for all $\{0,1\}^d$ and $1 \le i \le d$, we have sgn $(\sigma(g_b(\mathbf{x}_i)) t_i) = b_i$.
- 3. For all $1 \leq i \leq d$, take $y_i = \min\{g_b(\mathbf{x}_i) \mid \sigma(g_b(\mathbf{x}_i)) \geq t_i, b \in \{0,1\}^d\}$.
- 4. Since σ is non-decreasing, it is straightforward to verify that sgn $(g_b(\mathbf{x}_i) t_i) = b_i$ for all $\{0, 1\}^d$ and $1 \le i \le d$

A class \mathcal{G} of real-valued functions is a vector space if for all $g_1, g_2 \in \mathcal{G}$ and any numbers $\lambda, \mu \in \mathbb{R}$, we have $\lambda g_1 + \mu g_2 \in \mathcal{G}$.

Theorem (Pseudo-dimension of vector spaces)

If \mathcal{G} is a vector space of real-valued functions, then $Pdim(\mathcal{G}) = dim(\mathcal{G})$.

Theorem (VC-dimension of vector spaces)

Let F be a vector space of real-valued functions, g is a real-valued function, and $H = \{sgn(f + g) \mid f \in F\}$. Then VCdim(H) = dim(F).

Proof (Pseudo-dimension of vector spaces).

- 1. If $B_{\mathcal{G}}$ be class of **below the graph** indicator functions, then $Pdim(\mathcal{G}) = VC(B_{\mathcal{G}})$.
- 2. But $B_{\mathcal{G}} = \{(\mathbf{x}, y) \mapsto \operatorname{sgn}(g(\mathbf{x}) y) \mid g \in \mathcal{G}\}.$
- 3. Hence, functions $B_{\mathcal{G}}$ are of the form sgn $(g_1 + g_2)$, where
 - $g_1 = g$ is a function from vector space
 - g_2 is the fixed function $g_2(\mathbf{x}, y) = -y$.
- 4. Then, Theorem (VC-dimension of vector spaces) shows that $Pdim(\mathcal{G}) = dim(\mathcal{G})$.

Functions that map into some bounded range are not vector space.

Corollary

If \mathcal{G} is a subset of a vector space \mathcal{G}' of real valued functions then $\mathsf{Pdim}(\mathcal{G}) \leq \mathsf{dim}(\mathcal{G}')$

Theorem (Pseudo-dimension of hyperplanes)

Let $\mathcal{G} = \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle + b \mid \mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\}$ be the class of hyperplanes in \mathbb{R}^n , then $Pdim(\mathcal{G}) = n + 1$.

Proof (Pseudo-dimension of hyperplanes).

- 1. It is easy to check that \mathcal{G} is a vector space.
- 2. Let g_i be the *i*th coordinate projection $f_i(\mathbf{x}) = x_i$ for all $1 \le i \le n$ and $\mathbf{1}$ be identity-1 function. Then $B = \{g_1, \dots, g_n, \mathbf{1}\}$ is basis of \mathcal{G} .
- 3. Hence, from Theorem (Pseudo-dimension of vector spaces), we obtain $Pdim(\mathcal{G}) = n + 1$

A polynomial transformation of \mathbb{R}^n is $g(\mathbf{x}) = w_0 + w_1\phi_1(\mathbf{x}) + w_2\phi_2(\mathbf{x}) + \ldots + w_k\phi_k(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$, where k is an integer and for each $1 \le i \le k$, function $\phi_i(\mathbf{x})$ is defined as

$$\phi_i(\mathbf{x}) = \prod_{j=1}^n x_j^{r_i}$$

for some nonnegative integers r_{ij} and $r_i = r_{i1} + r_{i2} + \ldots + r_{in}$ and the degree of g as $r = \max_i r_i$.

Theorem (Pseudo-dimension of polynomial transformation) If \mathcal{G} is a class of all polynomial transformations on \mathbb{R}^n of degree at most r, then $Pdim(\mathcal{G}) = \binom{n+r}{r}$.

Theorem (Pseudo-dimension of all polynomial transformations) Let \mathcal{G} be class of all polynomial transformations on $\{0,1\}^n$ of degree at most r, then $Pdim(\mathcal{G}) = \sum_{i=0}^r {n \choose i}.$

Homework: Prove the above Theorems.

Theorem (Generalization bound for bounded regression)

Let *H* be a family of real-valued functions and $\mathcal{G} = \{z = (\mathbf{x}, y) \mapsto L(h(x), y) \mid h \in H\}$ be a family of loss functions associated to a hypothesis set *H*. Assume that $Pdim(\mathcal{G}) = d$ and loss function *L* is non-negative and bounded by *M*. Then, for any $\delta > 0$, with probability at least $(1 - \delta)$ over the choice of an i.i.d. sample *S* of size *m* drawn from \mathcal{D}^m , the following inequality holds for all $h \in H$

$$\mathsf{R}(h) \leq \hat{\mathsf{R}}(h) + M\sqrt{rac{2d\lograc{em}{d}}{m}} + M\sqrt{rac{\lograc{1}{\delta}}{2m}}$$

Proof (Generalization bound for bounded regression).

Homework: Prove this Theorem.

Regression algorithms

Regression algorithms

Linear regression

- 1. Let $\Phi : \mathcal{X} \mapsto \mathbb{R}^n$ and $H = \{h : \mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle + b \mid \mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\}.$
- 2. Given sample S, the problem is to find a $h \in H$ such that

4. Let $\mathbf{w} = (w_1, \dots, w_n, b)^T$ and $\mathbf{y} = (y_1, \dots, y_m)^T$ be weight and target vectors.

5. By setting $\nabla \hat{\mathbf{R}}(h) = 0$, we obtain

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^{T})^{\dagger}\mathbf{X}\mathbf{y}$$

6. When XX^{T} is invertible, this problem has a unique solution; otherwise there are several solutions.

Theorem

Let $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be a PDS kernel, $\Phi : \mathcal{X} \mapsto \mathbb{H}$ a feature mapping associated to K, and $H = \{\mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle \mid \|\mathbf{w}\|_{\mathbb{H}} \leq \Lambda\}$. Assume that there exists r > 0 such that $K(\mathbf{x}, \mathbf{x}) \leq r^2$ and M > 0 such that $|h(\mathbf{x}) - y| < M$ for all $(\mathbf{x}, y \in \mathcal{X} \times \mathcal{Y})$. Then for any $\delta > 0$, with probability at least $(1 - \delta)$, each of the following inequalities holds for all $h \in H$.

$$\begin{split} \mathbf{R}(h) &\leq \mathbf{\hat{R}}(h) + 4M\sqrt{\frac{r^2\Lambda^2}{m}} + M^2\sqrt{\frac{\log\frac{1}{\delta}}{2m}} \\ \mathbf{R}(h) &\leq \mathbf{\hat{R}}(h) + \frac{4M\Lambda\sqrt{\mathrm{Tr}\left[\mathbf{K}\right]}}{m} + 3M^2\sqrt{\frac{\log\frac{2}{\delta}}{2m}} \end{split}$$

Proof.

1. By the bound on the empirical Rademacher complexity of kernel-based hypotheses, the following holds for any sample *S* of size *m*:

$$\hat{\mathcal{R}}(H) \leq rac{\Lambda\sqrt{\operatorname{Tr}\left[\mathcal{K}
ight]}}{m} \leq \sqrt{rac{r^2\Lambda^2}{m}}$$

- 2. This implies that $\mathcal{R}_m(h) \leq \sqrt{\frac{r^2\Lambda^2}{m}}.$
- 3. Combining these inequalities with the bounds of Theorem Rademacher complexity regression bounds, the Theorem will be proved.

Regression algorithms

Kernel ridge regression

1. The following bound suggests minimizing a trade-off between empirical squared loss and norm of the weight vector.

$$\mathbf{R}(h) \leq \mathbf{\hat{R}}(h) + 4M\sqrt{rac{r^2\Lambda^2}{m}} + M^2\sqrt{rac{\lograc{1}{\delta}}{2m}}$$

2. Kernel ridge regression is defined by minimization of an objective function

$$\begin{split} \min_{\mathbf{w}} F(\mathbf{w}) &= \min_{\mathbf{w}} \left[\lambda \|\mathbf{w}\|^2 + \sum_{i=1}^m \left(\langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle - y_i \right)^2 \right] \\ &= \min_{\mathbf{w}} \left[\lambda \|\mathbf{w}\|^2 + \left\| \mathbf{\Phi}^T \mathbf{w} - \mathbf{y} \right\|^2 \right] \end{split}$$

3. By setting $\nabla F(\mathbf{w}) = 0$, we obtain $\mathbf{w} = (\mathbf{\Phi}\mathbf{\Phi}^T + \lambda \mathbf{I})^{-1}\mathbf{\Phi}\mathbf{y}$.

1. An alternative formulation of kernel ridge regression is

$$\begin{split} & \min_{\mathbf{w}} \left\| \mathbf{\Phi}^{\mathsf{T}} \mathbf{w} - \mathbf{y} \right\|^2 \text{ subject to } \|\mathbf{w}\|^2 \leq \Lambda^2 \\ & \min_{\mathbf{w}} \sum_{i=1}^m \xi_i^2 \text{ subject to } (\|\mathbf{w}\|^2 \leq \Lambda^2) \land (\forall i \in \{1, \dots, m\}, \xi_i = y_i - \langle \mathbf{w}, \mathbf{\Phi}(\mathbf{x}_i) \rangle) \end{split}$$

2. By using the Lagrangian method, we obtain

$$\mathbf{w} = \mathbf{\Phi} \left(\mathbf{K} + \lambda \mathbf{I} \right)^{-1} \mathbf{y}.$$

- 3. Note that $(\mathbf{K} + \lambda \mathbf{I})^{-1}$ is invertible.
- 4. Therefore, the dual optimization problem as well as the primal optimization problem has a closed-form solution.

Regression algorithms

Support vector regression

- 1. Support vector regression (SVR) algorithm is inspired by SVM algorithm.
- 2. The main idea of SVR consists of fitting a tube of width $\epsilon > 0$ to the data.

- 3. This defines two sets of points:
 - points falling inside the tube, which are
 ϵ-close to the predicted function, not penalized,
 - points falling outside the tube are penalized based on their distance to the predicted function.
- 4. This is similar to the penalization used by SVMs in classification.
- Using a hypothesis set of linear functions H = {x → ⟨w, Φ(x)⟩ + b | w ∈ ℝⁿ, b ∈ ℝ}, where Φ is the feature mapping corresponding some PDS kernel K.

1. The optimization problem for SVR is

$$\min_{\mathbf{w}, b} \left[\frac{1}{2} \lambda \left\| \mathbf{w} \right\|^2 + C \sum_{i=1}^m |y_i - (\langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle + b)|_{\epsilon} \right]$$

where $|.|_{\epsilon}$ denotes ϵ -insensitive loss

$$\forall y, y' \in \mathcal{Y}, \quad |y' - y|_{\epsilon} = \max \left(0, |y' - y| - \epsilon\right)$$

The use of
 ϵ-insensitive loss leads to sparse solutions with a relatively small number of support vectors.

1. Using slack variables $\xi_i \ge 0$ and $\xi'_i \ge 0$ for $1 \le i \le m$, the problem becomes

$$\begin{split} \min_{\mathbf{w}, b, \xi, \xi'} \left[\frac{1}{2} \lambda \|\mathbf{w}\|^2 + C \sum_{i=1}^m \left(\xi_i + \xi'_i \right) \right] \\ \text{subject to } \left(\langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle + b \right) - y_i \leq \epsilon + \xi_i \\ y_i - \left(\langle \mathbf{w}, \Phi(\mathbf{x}_i) \rangle + b \right) \leq \epsilon + \xi'_i \\ \xi_i \geq 0, \quad \xi'_i \geq 0, \quad \forall i, 1 \leq i \leq m \end{split}$$

- 2. This is a convex quadratic program (QP) with affine constraints.
- 3. By introducing Lagrangian and applying KKT conditions, the problem will be solved.
- 4. Let \mathcal{D} be the distribution according to which sample points are drawn.
- 5. Let \hat{D} the empirical distribution defined by a training sample of size *m*.

Theorem (Generalization bounds of SVR)

Let $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be a PDS kernel, $\Phi : \mathcal{X} \mapsto \mathbb{H}$ a feature mapping associated to K, and $H = \{\mathbf{x} \mapsto \langle \mathbf{w}, \Phi(\mathbf{x}) \rangle \mid \|\mathbf{w}\|_{\mathbb{H}} \leq \Lambda\}$. Assume that there exists r > 0 sub that $K(\mathbf{x}, \mathbf{x}) \leq r^2$ and M > 0such that $|h(\mathbf{x}) - y| < M$ for all $(\mathbf{x}, y \in \mathcal{X} \times \mathcal{Y})$. Then for any $\delta > 0$, with probability at least $(1 - \delta)$, each of the following inequalities holds for all $h \in H$.

$$\begin{split} & \underset{(\mathbf{x},y)\sim\mathcal{D}}{\mathbb{E}}[|h(\mathbf{x})-y|_{\epsilon}] \leq \underset{(\mathbf{x},y)\sim\hat{\mathcal{D}}}{\mathbb{E}}[|h(\mathbf{x})-y|_{\epsilon}] + 2\sqrt{\frac{r^{2}\Lambda^{2}}{m}} + M\sqrt{\frac{\log\frac{1}{\delta}}{2m}} \\ & \underset{(\mathbf{x},y)\sim\mathcal{D}}{\mathbb{E}}[|h(\mathbf{x})-y|_{\epsilon}] \leq \underset{(\mathbf{x},y)\sim\hat{\mathcal{D}}}{\mathbb{E}}[|h(\mathbf{x})-y|_{\epsilon}] + \frac{2\Lambda\sqrt{\mathrm{Tr}\left[\mathsf{K}\right]}}{m} + 3M\sqrt{\frac{\log\frac{2}{\delta}}{2m}} \end{split}$$

Proof (Generalization bounds of SVR).

Since for any $y' \in \mathcal{Y}$, the function $y \mapsto |y - y'|_{\epsilon}$ is 1-Lipschitz, the result follows Theorem Rademacher complexity regression bounds and the bound on the empirical Rademacher complexity of H.

1. Alternative convex loss functions can be used to define regression algorithms.

- 2. SVR admits several advantages
 - SVR algorithm is based on solid theoretical guarantees,
 - The solution returned SVR is sparse
 - SVR allows a natural use of PDS kernels
 - SVR also admits favorable stability properties.
- 3. SVR also admits several disadvantages
 - SVR requires the selection of two parameters, C and ϵ , which are determined by cross-validation.
 - may be computationally expensive when dealing with large training sets.

Regression algorithms

Least absolute shrinkage and selection operator (Lasso)

1. The optimization problem for Lasso is defined as

$$\min_{\mathbf{w},b} F(\mathbf{w}) = \min_{\mathbf{w},b} \left[\lambda \|\mathbf{w}\|_1 + C \sum_{i=1}^m \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b - y_i \right)^2 \right]$$

- 2. This is a convex optimization problem, because
 - $\|\mathbf{w}\|_1$ is convex as with all norms
 - the empirical error term is convex
- 3. Hence, the optimization problem can be written as

$$\min_{\mathbf{w},b} \left[\sum_{i=1}^{m} \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b - y_i \right)^2 \right] \text{ subject to } \|\mathbf{w}\|_1 \leq \Lambda_1$$

4. The L_1 norm constraint is that it leads to a sparse solution w.

Theorem (Bounds of $\hat{\mathcal{R}}(H)$ **of Lasso)**

Let $\mathcal{X} \subseteq \mathbb{R}^n$ and let $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ be sample of size m. Assume that for all $1 \leq i \leq m$, $\|\mathbf{x}_i\|_{\infty} \leq r_{\infty}$ for some $r_{\infty} > 0$, and let $H = \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle \mid \|\mathbf{w}\|_1 \leq \Lambda_1\}$. Then, the empirical Rademacher complexity of H can be bounded as follows

$$\hat{\mathcal{R}}(H) \leq \sqrt{\frac{2r_{\infty}^2\Lambda_1^2\log(2n)}{m}}$$

Definition (Dual norms)

Let $\|.\|$ be a norm on \mathbb{R}^n . Then, dual norm $\|.\|_*$ associated to $\|.\|$ is defined by

$$\forall \mathbf{y} \in \mathbb{R}^{n}, \quad \left\|\mathbf{y}\right\|_{*} = \sup_{\|\mathbf{x}\|=1} \left|\langle \mathbf{y}, \mathbf{x} \rangle\right|$$

For any $p, q \ge 1$ that are conjugate $(\frac{1}{p} + \frac{1}{q} = 1)$, L_p and L_q norms are dual norms. In particular, L_2 is dual norm of L_2 , and L_1 is dual norm of L_∞ norm.

Proof (Bounds of $\hat{\mathcal{R}}(H)$ **of Lasso)**

1. For any $1 \le i \le m$, we denote by x_{ij} , the *j*th component of \mathbf{x}_i .

$$\hat{\mathcal{R}}(H) = \frac{1}{m} \mathop{\mathbb{E}}_{\sigma} \left[\sup_{\|\mathbf{w}\|_{1} \leq \Lambda_{1}} \sum_{i=1}^{m} \sigma_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle \right]$$

$$= \frac{\Lambda_{1}}{m} \mathop{\mathbb{E}}_{\sigma} \left[\left\| \sum_{i=1}^{m} \sigma_{i} \mathbf{x}_{i} \right\|_{\infty} \right] \qquad \text{(by definition of the dual norm)}$$

$$= \frac{\Lambda_{1}}{m} \mathop{\mathbb{E}}_{\sigma} \left[\max_{j \in \{1, \dots, n\}} \sum_{i=1}^{m} \sigma_{i} x_{ij} \right] \qquad \text{(by definition of } \|.\|_{\infty})$$

$$= \frac{\Lambda_{1}}{m} \mathop{\mathbb{E}}_{\sigma} \left[\max_{j \in \{1, \dots, n\}} \max_{s \in \{-1, +1\}} s \sum_{i=1}^{m} \sigma_{i} x_{ij} \right] \qquad \text{(by definition of } \|.\|_{\infty})$$

$$= \frac{\Lambda_{1}}{m} \mathop{\mathbb{E}}_{\sigma} \left[\sup_{z \in A} \sum_{i=1}^{m} \sigma_{i} z_{i} \right].$$

where *A* is set of *n* vectors $\{s(x_{1j},...,x_{mj}) \mid j \in \{1,...,n\}, s \in \{-1,+1\}\}$.

Proof (Bounds of $\hat{\mathcal{R}}(H)$ **of Lasso).**

- 2. For any $\mathbf{z} \in A$, we have $\|\mathbf{z}\|_2 \le \sqrt{mr_{\infty}^2} = r_{\infty}\sqrt{m}$.
- 3. Thus by Massart's Lemma, since A contains at most 2n elements, the following inequality holds:

$$\hat{\mathcal{R}}(H) \leq \Lambda_1 r_\infty \sqrt{m} \frac{2\log(2n)}{m} = \Lambda_1 r_\infty \sqrt{\frac{2\log(2n)}{m}}.$$

- 1. This bounds depends on dimension *n* is only logarithmic, which suggests that using very high-dimensional feature spaces does not significantly affect generalization.
- 2. By combining of Theorem (Bounds of $\hat{\mathcal{R}}(H)$ of Lasso) and Rademacher generalization bound, we can prove the following Theorem.

Theorem (Rademacher complexity of linear hypotheses with bounded L_1 norm)

Let $\mathcal{X} \subseteq \mathbb{R}^n$ and $H = \{\mathbf{x}_1 \mapsto \langle \mathbf{w}, \mathbf{x} \rangle \mid \|\mathbf{w}\|_1 \leq \Lambda_1\}$. Let also $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ be sample of size m. Assume that there exists $r_{\infty} > 0$ such that for all $\mathbf{x} \in \mathcal{X}$, $\|\mathbf{x}_i\|_{\infty} \leq r_{\infty}$ and M > 0 such that $|h(\mathbf{x}) - y| \leq M$ for all $(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$. Then, for any $\delta > 0$, with probability at least $(1 - \delta)$, each of the following inequality holds for $h \in H$

$$\mathbf{R}(h) \leq \mathbf{\hat{R}}(h) + 2r_{\infty}\Lambda_1 M \sqrt{rac{2\log(2n)}{m}} + M^2 \sqrt{rac{\lograc{1}{\delta}}{2m}}$$

- 1. Ridge regression and Lasso have same form as the right-hand side of this generalization bound.
- Lasso has several advantages:
 - It benefits from strong theoretical guarantees and returns a sparse solution.
 - The sparsity of the solution is also computationally attractive (inner product).
 - The algorithm's sparsity can also be used for feature selection.
- 3. The main drawbacks are: usability of kernel and closed-form solution.

Regression algorithms

Online regression algorithms

- 1. The regression algorithms admit natural online versions.
- 2. These algorithms are useful when we have very large data sets, where a batch solution can be computationally expensive.

Online linear regression

- 1: Initialize w₁.
- 2: for $t \leftarrow 1, 2, \ldots, T$ do.
- 3: Receive $\mathbf{x}_t \in \mathbb{R}^n$.
- 4: Predict $\hat{y}_t = \langle \mathbf{w}_t, \mathbf{x}_t \rangle$.
- 5: Observe true label $y_t = h^*(\mathbf{x}_t)$.
- 6: Compute the loss $L(\hat{y}_t, y_t)$. s
- 7: Update \mathbf{w}_{t+1} .
- 8: end for

- 1. Widrow-Hoff algorithm uses stochastic gradient descent technique to linear regression objective function.
- 2. At each round, the weight vector is augmented with a quantity that depends on the prediction error $(\langle \mathbf{w}_t, \mathbf{x}_t \rangle y_t)$.

WidrowHoff regression

1: function WIDROWHOFF(w ₀)		
2:	Initialize $\mathbf{w}_1 \leftarrow \mathbf{w}_0$.	\triangleright typically $\mathbf{w}_0 = 0$.
3:	for $t \leftarrow 1, 2, \ldots, T$ do.	
4:	Receive $\mathbf{x}_t \in \mathbb{R}^n$.	
5:	Predict $\hat{y}_t = \langle \mathbf{w}_t, \mathbf{x}_t \rangle$.	
6:	Observe true label $y_t = h^*(\mathbf{x}_t)$.	
7:	Compute the loss $L(\hat{y}_t, y_t)$.	
8:	$Update \mathbf{w}_{t+1} \gets \mathbf{w}_t - 2\eta \left(\left< \mathbf{w}_t, \mathbf{x}_t \right> - y_t \right) \mathbf{x}_t.$	\triangleright learning rate $\eta > 0$.
9:	end for	
10:	return w_{T+1}	
11: end function		

- 1. There are two motivations for the update rule in Widrow-Hoff.
- 2. The first motivation is that
 - The loss function is defined as

$$L(\mathbf{w}, \mathbf{x}, y) = (\langle \mathbf{w}, \mathbf{x} \rangle - y)^2$$

• To minimize the loss function, move in the direction of the negative gradient

$$abla_{\mathbf{w}} L(\mathbf{w}, \mathbf{x}, y) = 2(\langle \mathbf{w}, \mathbf{x} \rangle - y) \mathbf{x}$$

This gives the following update rule

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \nabla_{\mathbf{w}} L(\mathbf{w}_t, \mathbf{x}_t, y_t)$$

- 3. The second motivation is that we have two goals:
 - We want loss of \mathbf{w}_{t+1} on (\mathbf{x}_t, y_t) be small, which means we want to minimize $(\langle \mathbf{w}_{t+1}, \mathbf{x}_t \rangle y_t)^2$.
 - We don't want \mathbf{w}_{t+1} be too far from \mathbf{w}_t , ie. we don't want $\|\mathbf{w}_t \mathbf{w}_{t+1}\|$ be too big.

1. Combining these two goals, we compute w_{t+1} by solving the following optimization problem

$$\mathbf{w}_{t+1} = \arg\min\left(\langle \mathbf{w}_{t+1}, \mathbf{x}_t \rangle - y_t\right)^2 + \|\mathbf{w}_{t+1} - \mathbf{w}_t\|$$

2. Take the gradient of this equation, and make it equal to zero. We obtain

$$\mathbf{w}_{t+1} = \mathbf{w}_t - 2\eta \left(\langle \mathbf{w}_{t+1}, \mathbf{x}_t \rangle - y_t \right) \mathbf{x}_t$$

- 3. Approximating \mathbf{w}_{t+1} by \mathbf{w}_t on right-hand side gives updating rule of Widrow-Hoff algorithm.
- 4. Let $L_A = \sum_{t=1}^{T} (\hat{y}_t y_t)$ be loss of algorithm A.
- 5. Let $L_{\mathbf{u}} = \sum_{t=1}^{T} (\langle \mathbf{u}, \mathbf{x}_t \rangle y_t)$ be loss of another regressor denoted by $\mathbf{u} \in \mathbb{R}^n$.
- 6. We upper bound loss of Widrow-Hoff algorithm in terms of loss of the best vector.

Lemma (Bounds on potential function of Widrow-Hoff algorithm) Let $\Phi_t = \|\mathbf{w}_t - \mathbf{u}\|_2^2$ be the potential function, then we have $\Phi_{t+1} - \Phi_t \le -\eta l_t^2 + \frac{\eta}{1-\eta} g_t^2$ where $l_t = (\hat{y}_t - y) = \langle \mathbf{w}_t, \mathbf{x}_t \rangle - y_t$ $g_t = \langle \mathbf{u}_t, \mathbf{x}_t \rangle - y_t$

So that l_t^2 denotes the learners loss at round t, and g_t^2 is **u**'s loss at round t.

Proof (Bounds on potential function of Widrow-Hoff algorithm).

1. Let $\Delta_t = \eta (\langle \mathbf{w}_t, \mathbf{x}_t \rangle - y_t) \mathbf{x}_t = \eta l_t \mathbf{x}_t$ (update to the weight vector). Then, we have

$$\begin{split} \Phi_{t+1} - \Phi_t &= \|\mathbf{w}_{t+1} - \mathbf{u}\|_2^2 - \|\mathbf{w}_t - \mathbf{u}\|_2^2 \\ &= \|\mathbf{w}_t - \mathbf{u} - \Delta_t\|_2^2 - \|\mathbf{w}_t - \mathbf{u}\|_2^2 \\ &= \|\mathbf{w}_t - \mathbf{u}\|_2^2 - 2\left\langle (\mathbf{w}_t - \mathbf{u}), \Delta_t \right\rangle + \|\Delta_t\|_2^2 - \|\mathbf{w}_t - \mathbf{u}\|_2^2 \\ &= -2\eta l_t \left\langle \mathbf{x}_t, (\mathbf{w}_t - \mathbf{u}) \right\rangle + \eta^2 l_t^2 \|\mathbf{x}_t\|_2^2 \\ &\leq -2\eta l_t \left(\left\langle \mathbf{x}_t, \mathbf{w}_t \right\rangle - \left\langle \mathbf{u}, \mathbf{x}_t \right\rangle \right) + \eta^2 l_t^2 \qquad (\text{since } \|\mathbf{x}_t\|_2^2 \leq 1) \\ &= -2\eta l_t \left[\left(\left\langle \mathbf{w}_t, \mathbf{x}_t \right\rangle - y_t \right) - \left(\left\langle \mathbf{u}, \mathbf{x}_t \right\rangle - y_t \right) \right] + \eta^2 l_t^2 \\ &= -2\eta l_t (l_t - g_t) + \eta^2 l_t^2 = -2\eta l_t^2 + 2\eta l_t g_t + \eta^2 l_t^2 \\ &\leq -2\eta l_t^2 + 2\eta \left(\frac{l_t^2 (1 - \eta) + g_t^2 / (1 - \eta)}{2} \right) + \eta^2 l_t^2 \qquad (\text{by AM-GM}) \\ &= -\eta l_t^2 + \left(\frac{\eta}{1 - \eta} \right) g_t^2 \end{split}$$

Proof (Bounds on potential function of Widrow-Hoff algorithm).

- 2. Arithmetic mean-geometric mean inequality (AM-GM) states: for any set of non-negative real numbers, arithmetic mean of the set is greater than or equal to geometric mean of the set.
- 3. It states for any real numbers $x_1, \ldots, x_n \ge 0$, we have $\frac{x_1 + \ldots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \ldots x_n}$.

4. For reals
$$a = l_t^2(1-\eta) \ge 0$$
 and $b = \frac{g_t^2}{1-\eta} \ge 0$, AM-GM is $\sqrt{ab} \le \frac{a+b}{2}$.

Theorem (Upper bound of loss Widrow-Hoff algorithm)

Assume that for all rounds t we have $\|\mathbf{x}_t\|_2^2 \leq 1$, then we have

$$L_{WH} \leq \min_{\mathbf{u}\in\mathbb{R}^n} \left[\frac{L_{\mathbf{u}}}{1-\eta} + \frac{\|\mathbf{u}\|_2^2}{\eta} \right]$$

where L_{WH} denotes the loss of Widrow-Hoff algorithm.

- 1. Let $\sum_{t=1}^{T} (\Phi_{t+1} \Phi_t) = \Phi_{T+1} \Phi_1$.
- 2. By setting $\mathbf{w}_1 = 0$ and observation that $\Phi_t \ge 0$, we obtain

$$- \|u\|_{2}^{2} = -\Phi_{1} \leq \Phi_{T+1} - \Phi_{1}$$

3. Hence, we have

$$\begin{aligned} &- \left\| u \right\|_{2}^{2} \leq \sum_{t=1}^{T} \left(\Phi_{t+1} - \Phi_{t} \right) \\ &\leq \sum_{t=1}^{T} \left(-\eta l_{t}^{2} + \left(\frac{\eta}{1-\eta} \right) g_{t}^{2} \right) = -\eta L_{WH} + \left(\frac{\eta}{1-\eta} \right) L_{u}. \end{aligned}$$

- 4. By simplifying this inequality, we obtain $L_{WH} \leq \left(\frac{\eta}{1-\eta}\right) L_{u} + \frac{\|u\|_{2}^{2}}{\eta}$.
- 5. Since u was arbitrary, the above inequality must hold for the best vector.

1. We can look at the average loss per time step

$$\frac{L_{\textit{WH}}}{T} \leq \min_{\mathbf{u}} \left[\left(\frac{\eta}{1-\eta} \right) \frac{L_{\mathbf{u}}}{T} + \frac{\|\boldsymbol{u}\|_2^2}{\eta T} \right].$$

2. As T gets large, we have

$$\left(\frac{\|u\|_2^2}{\eta T}\right) \to 0$$

3. If step-size (η) is very small,

$$\left(\frac{\eta}{1-\eta}\right)\frac{L_{u}}{T} \to \min_{u}\left(\frac{L_{u}}{T}\right),$$
 Show it.

which is the average loss of the best regressor.

4. This means that the Widrow-Hoff algorithm is performing almost as well as the best regressor vector as the number of rounds gets large.

Summary

- We study the bounded regression problem.
- For unbounded regression, there is the main issue for deriving uniform convergence bounds.
- We defined pseudo-dimension for real-valued function classes.
- We study the generalization bounds based on Rademacher complexity.
- We study several regression algorithms and analysis their bounds.
- We study an online regression algorithms and analysis its bound.

- 1. Chapter 11 of Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine Learning. Second Edition. MIT Press.
- 2. Chapter 11 of Martin Anthony and Peter L. Bartlett (1999). *Learning in Neural Networks : Theoretical Foundations*. Cambridge University Press.

References

Anthony, Martin and Peter L. Bartlett (1999). *Learning in Neural Networks : Theoretical Foundations*. Cambridge University Press.

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). *Foundations of Machine Learning*. Second Edition. MIT Press.

Questions?