Machine learning theory

Probably approximately correct model

Hamid Beigy

Sharif University of Technology

February 25, 2023

Table of contents

- 1. Introduction
- 2. Probably approximately correct model
- 3. Learning bound for finite H
- 4. Agnostic probably approximately correct model
- 5. Uniform convergence
- 6. Agnostic PAC-Learning for finite H
- 7. Summary
- 8. Reading

Introduction

1. The consistency model is not a particularly great model of learning, but it's simple and good to start.

Definition (Consistency model)

We say that algorithm \mathcal{A} learns the concept class \mathcal{C} in the consistency model if given any training set S, the algorithm produces a hypothesis (concept) $c \in \mathcal{C}$ consistent with S if one exists, and outputs "there is no consistent concept" otherwise.

Definition (Learnability of consistency model)

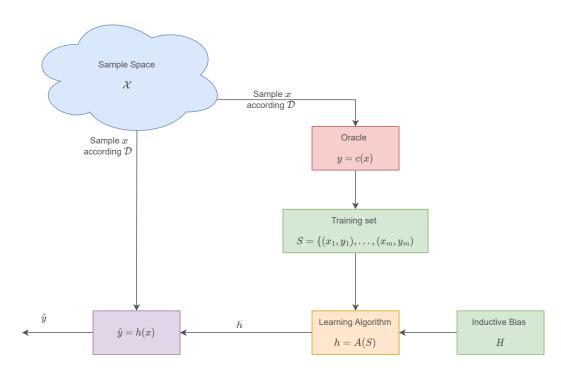
We say that a class $\mathcal C$ is learnable in the consistency model if there exists an efficient algorithm $\mathcal A$ that learns $\mathcal C$ in the consistency model.

- 1. Here efficient means that the algorithm runs in polynomial time in terms of the size of the set S and the size of each $x \in S$.
- 2. The examples given in the previous lecture showed a few shortcomings of the consistency model.
 - A class \mathcal{C} can be learnable while a subclass of \mathcal{C} can be unlearnable.
 - The consistency model yields a concept that tells us nothing about the accuracy of the model on new data (generalization).
 - The consistency model has a practical problem in that training data that contains noise is not handled in a robust way.

- 1. We need to add the distribution from which training and test examples are generated.
- 2. We assume that the following conditions hold.
 - ullet Training and test examples are generated from some unknown distribution ${\cal D}.$
 - Each example is generated independently.
 - There exists a function $c \in \mathcal{C}$ (concept) such that each example labeled according to c.
 - We would like the results to be distribution-free (the results hold for any target distribution).
- 3. Learning algorithm receives training examples and outputs a hypothesis $h \in H$...
- 4. Hypothesis h makes a mistake if $h(x) \neq c(x)$.
- 5. We measure error of learning algorithm using generalization error.

$$\mathsf{R}(h) = \mathop{\mathbb{P}}_{x \sim \mathcal{D}} \left[h(x) \neq c(x) \right]$$

6. We aim to have R(h) be small.



1. We aim to have R(h) be small.

Definition (Approximately correct hypothesis)

Hypothesis h is called approximately correct if $\mathbf{R}(h) \leq \epsilon$ (for small ϵ).

- 2. Parameter ϵ is called accuracy parameter.
- 3. We can't always guarantee that $\mathbf{R}(h) \leq \epsilon$ because, depending on training set, the training data may be a very unrepresentative of the domain set.
- 4. We require that we are able to learn a good approximation with high probability.
- 5. In particular, we require that $\mathbf{R}(h) \leq \epsilon$ with probability at least 1δ .
- 6. This hypothesis is called **probably approximately correct**.
- 7. Parameter δ is called confidence parameter.

Probably approximately correct model

Definition (PAC Learnability)

A concept class $\mathcal C$ is **PAC-learnable** by hypothesis class H if there exists an algorithm $\mathcal A$, such that for all target concepts $c \in \mathcal C$, for all distributions $\mathcal D$ on $\mathcal X$, for all $\epsilon, \delta \in (0,1)$, the algorithm $\mathcal A$ takes

$$m \geq m_H(\epsilon, \delta) = extit{poly}\left(rac{1}{\epsilon}, rac{1}{\delta}, n, |c|
ight)$$

examples in form of $S = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_m, c(\mathbf{x}_m))\}$, where each \mathbf{x}_i is chosen from space \mathcal{X} at random according to the target distribution \mathcal{D} , and produces a hypothesis $h \in \mathcal{H}$, such that

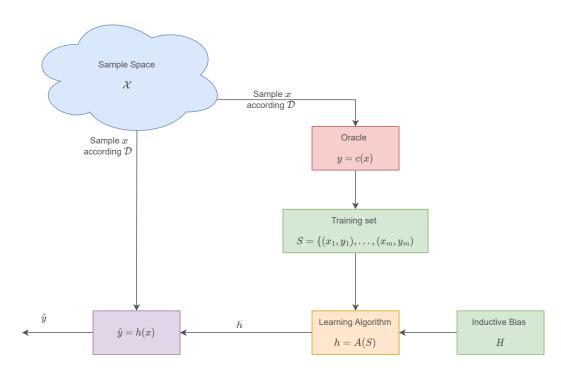
$$\mathop{\mathbb{P}}_{\mathcal{S}\sim\mathcal{D}^m}[\mathsf{R}(\mathit{h})\leq\epsilon]\geq(1-\delta)$$

Definition (Sample complexity)

Function $m_H: (0,1)^2 \mapsto \mathbb{N}$ that measures how many samples are required to guarantee PAC learnability of H, is called **sample complexity**.

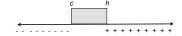
Definition (Efficiently PAC-learnable)

A concept class $\mathcal C$ is **efficiently PAC-learnable** by hypothesis class H if there exists an algorithm $\mathcal A$ that runs in $\operatorname{poly}\left(\frac{1}{\epsilon},\frac{1}{\delta},n,|c|\right)$ time and PAC-learns $\mathcal C$ using H.



Example (Learning the threshold function)

- 1. Let $\mathcal{X} = \mathbb{R}$ and $\mathcal{C} = \{positive \ half \ lines\}.$
- 2. For some point c, the corresponding positive half line is the region of \mathbb{R} designated by $[c, \infty)$.
- 3. We can treat $c \in \mathcal{C}$ as a point that separates the positive and negative regions of \mathbb{R} .



- 4. There will be a region between c and h in which h will incorrectly label new training points.
- 5. We want to find a h such that this region have size $\leq \epsilon$ in terms of true distribution \mathcal{D} .
- 6. We have two bad cases:

 B^+ h lies more than ϵ to the right of c.

 B^- h lies more than ϵ to the left of c.

7. First considering the likelihood of B^+ .

- 8. Let R^+ be the smallest region with c as its left border whose probability mass is at least ϵ .
- 9. That is $R^+ = [c, r^+]$, where $r^+ = \sup\{r \ge c \mid \mathbb{P}[[c, r)] \le \epsilon\}$.

Example (Learning the threshold function (cont.))

- 1. Let A be learning algorithm that returns the value of the smallest positive example.
- 2. Hence, h falls to the right of r^+ only if all training examples lie outside of R^+ .
- 3. Therefore, B^+ only occurs when no training points fall in R^+ .
- 4. Thus, if R^+ has size ϵ , then $\mathbb{P}\left[x_1 \notin R^+\right] \leq (1 \epsilon)$.
- 5. Given *m* training examples, we have

$$\mathbb{P}\left[B^{+}\right] = \mathbb{P}\left[\left(x_{1} \notin R^{+}\right) \wedge \ldots \wedge \left(x_{m} \notin R^{+}\right)\right]$$
$$= \mathbb{P}\left[x_{1} \notin R^{+}\right] \times \ldots \times \mathbb{P}\left[x_{m} \notin R^{+}\right] \leq \left(1 - \epsilon\right)^{m}$$

6. We have bad cases, hence

$$\mathbb{P}\left[\mathbf{R}(h) > \epsilon\right] = \mathbb{P}\left[B^{+} \vee B^{-}\right]$$

$$\leq \mathbb{P}\left[B^{+}\right] + \mathbb{P}\left[B^{-}\right]$$

$$\leq 2(1 - \epsilon)^{m}$$

$$\leq 2e^{-\epsilon m} \leq \delta. \qquad using \ 1 + x \leq e^{x}$$

- 7. Then $m \geq \frac{1}{\epsilon} \ln \left(\frac{2}{\delta} \right)$.
- 8. Rearranging terms, we see what with probability of at least $(1-\delta)$, we have $\mathbf{R}(h) \leq \frac{1}{m} \ln \left(\frac{2}{\delta} \right)$.

Example (Learning an interval)

1. Let $\mathcal{X} = \mathbb{R}$ and $\mathcal{C} = \{intervals\}$. In this concept class, we have

$$c(x) = \begin{cases} 1 & \text{if } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$

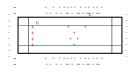
2. We have 2 boundary error regions. We force size of each region at most $\frac{\epsilon}{2}$.

- 3. Hence, we have 4 possible bad events.
- 4. A similar analysis as for the previous example, we have sample complexity of

$$m_H(\epsilon,\delta) \geq rac{2}{\epsilon} \ln \left(rac{4}{\delta}
ight)$$

Example (Learning axis-aligned rectangles)

1. Let $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{C} = \{axis - aligned rectangles\}$. In this concept class, we have



$$c(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \text{ belongs to the given rectangle} \\ 0 & \text{otherwise} \end{cases}$$

- 2. We have 4 boundary error regions. We force size of each region at most $\frac{\epsilon}{4}$.
- 3. A similar analysis as for the previous example, we have sample complexity of

$$m_H(\epsilon,\delta) \geq rac{4}{\epsilon} \ln \left(rac{4}{\delta}
ight)$$

Example (Learning axis-aligned hyper-rectangles)

Find the sample complexity of $\mathcal{X} = \mathbb{R}^n$ and $\mathcal{C} = \{axis - aligned \ hyper - rectangles\}$.

Learning bound for finite H

Theorem (Learning bound for finite H)

Let $H = \{h \mid h : \mathcal{X} \mapsto \{0,1\}\}$ be a finite set of functions and \mathcal{A} an algorithm that for any target concept $c \in H$ and sample S, returns a consistent hypothesis $h \in H$. Then, for any $\delta > 0$, with probability at least $(1 - \delta)$, we have

$$m_H(\epsilon, \delta) \geq rac{1}{\epsilon} \left(\log |H| + \log \left(rac{1}{\delta}
ight)
ight)$$
 $\mathsf{R}(h) \leq rac{1}{m} \left(\log |H| + \log \left(rac{1}{\delta}
ight)
ight)$

Proof (Learning bound for finite H).

For any $\epsilon > 0$, define $H_{\epsilon} = \{h \in H \mid \mathbf{R}(h) > \epsilon\}$. Then,

$$\mathbb{P}\left[\exists h \in H_{\epsilon} \mid \hat{\mathbf{R}}(h) = 0\right] = \mathbb{P}\left[\left(\hat{\mathbf{R}}(h_{1}) = 0\right) \vee \left(\hat{\mathbf{R}}(h_{2}) = 0\right) \vee \ldots \vee \left(\hat{\mathbf{R}}(h_{|H_{\epsilon}|}) = 0\right]\right]$$

$$\leq \sum_{h_{i} \in H_{\epsilon}} \mathbb{P}\left[\hat{\mathbf{R}}(h_{i}) = 0\right] \leq \sum_{h_{i} \in H_{\epsilon}} (1 - \epsilon)^{m}$$

$$\leq |H|(1 - \epsilon)^{m} \leq |H|e^{-m\epsilon} \leq \delta$$

Corollary

This theorem shows that when hypothesis space H is finite,

- 1. a consistent algorithm A is a PAC-learning algorithm,
- 2. specifies an upper bound on how much data we need to achieve a certain general error rate.
- 3. it relates a general relation between learning performance and the size of the hypothesis space, and the number of training examples,
- 4. the more data we have, the lower the upper bound of error we can achieve, and
- 5. the smaller the hypothesis size is, the less data we need to achieve a certain general error rate.

In this framework, we assumed that $\mathcal{C} \subseteq H$. This case is called realizable case.

Example (PAC-Learning of conjunctions)

- 1. Let $\mathcal{X} = \{0,1\}^n$ be the set of all *n*-bit vectors.
- 2. Let the concept class C consist of all conjunctions (AND of a subset of the (possibly negated) variables, such as $c(x) = x_2 \wedge x_7 \wedge x_9$.
- 3. The hypothesis space has $|H| = 3^n$ different hypotheses, then the sample complexity

$$m_{H}(\epsilon, \delta) \geq \frac{1}{\epsilon} \left(\log|H| + \log\left(\frac{1}{\delta}\right) \right)$$

$$= \frac{1}{\epsilon} \left(\log 3^{n} + \log\left(\frac{1}{\delta}\right) \right)$$

$$= \frac{1}{\epsilon} \left(n \log 3 + \log\left(\frac{1}{\delta}\right) \right)$$

- 4. This means that a polynomial number of samples will do to get a good enough hypothesis with high enough probability.
- 5. Therefore the class of conjunctions is **PAC learnable**.
- 6. Let $\delta = 0.02$, $\epsilon = 0.1$, and n = 10. Then $m_H(\epsilon, \delta) \ge 149$.
- 7. The computation complexity cost per training example is in O(n).

Example (PAC-Learning of DNF)

- 1. Let $\mathcal{X} = \{0,1\}^n$ be the set of all *n*-bit vectors.
- 2. Let the concept class $\mathcal C$ consist of all DNF that is the OR of an arbitrary number of arbitrary-length conjunctions.
- 3. For example, we have $c(x) = (x_2 \wedge x_7 \wedge x_8) \vee (x_4 \wedge \overline{x}_9) \vee (x_3 \wedge \overline{x}_5 \wedge x_7)$.
- 4. The hypothesis space has $|H| = 2^{2^n}$ different hypotheses, then the sample complexity

$$m_H(\epsilon, \delta) \geq rac{1}{\epsilon} \left(\log |H| + \log \left(rac{1}{\delta}
ight)
ight) \ = rac{1}{\epsilon} \left(\log 2^{2^n} + \log \left(rac{1}{\delta}
ight)
ight) \ = rac{1}{\epsilon} \left(2^n \log 2 + \log \left(rac{1}{\delta}
ight)
ight)$$

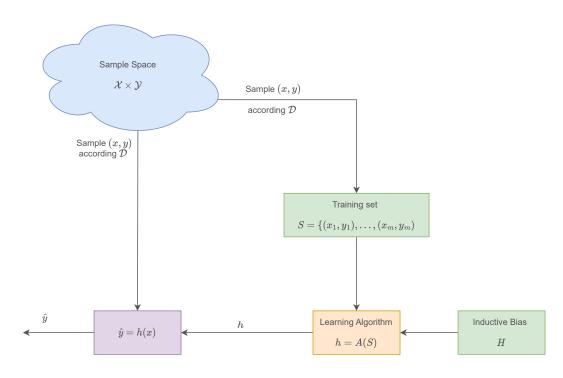
- 5. This does not tell us that the class is PAC learnable, because the bound is not a tight bound.
- 6. This bound only shows that we cannot use the general learning bound to show PAC learnability.
- 7. The question of whether this class is PAC learnable or not is an open problem.

- 1. We assumed that there exists a target function $c \in \mathcal{C} \subseteq H$ that perfectly labels the data.
- 2. This is not always a valid assumption to make.
 - There could be random noise in the data, sometimes causing a label to be flipped.
 - There is a perfect target function c, but it is not in hypotheses space that we are considering, i.e. $c \notin H$.
 - There is so much randomness in the labels that no function comes close to labeling all of our data correctly. In this, we would like to remove the assumption of a perfect target function.
- 3. This is often referred to as the agnostic learning setting, since we make no assumptions about the origin of labels.
- 4. It is also referred to as unrealizable setting, in contrast with realizable setting.
- 5. We need to update all of our definitions, assumptions, and goals for this new setting.

- 1. We now assume that there exists a joint distribution \mathcal{D} over pairs of values (\mathbf{x}, y) where \mathbf{x} is the input point and y is the corresponding label.
- 2. We now need to update our notion of error.

$$\mathsf{R}(h) = \mathop{\mathbb{P}}_{(\mathsf{x}, \mathsf{y}) \sim \mathcal{D}} \left[h(\mathsf{x}) \neq \mathsf{y} \right]$$

- 3. We can still model a perfect target function as a joint probability distribution for which the label y is deterministically equal to c(x) conditioned on the input x.
- 4. Previously, our goal was to find a hypothesis $h \in H$ such that $\mathbf{R}(h) \leq \epsilon$. Here, such a function might not exist.
- 5. We can only possibly hope to find a function as good as the best function $h \in H$.
- 6. Therefore, our new goal is to output a function $h \in H$ such that R(h) is close to $\min_{h' \in H} R(h')$.



Definition (Agnostic PAC Learnability)

A hypothesis class H is agnostic PAC learnable, if there exist a function $m_H:(0,1)^2\mapsto\mathbb{N}$ and a learning algorithm \mathcal{A} with the following property: for every $\epsilon,\delta\in(0,1)$ and for every distribution \mathcal{D} over $\mathcal{X}\times\mathcal{Y}$, when running the learning algorithm \mathcal{A} on $m\geq m_H(\epsilon,\delta)$ i.i.d. examples generated by \mathcal{D} , the algorithm returns a hypothesis $h\in H$ such that, with probability of at least $(1-\delta)$ the following equation holds (over the choice of the m training examples),

$$R(h) \leq \min_{h' \in H} R(h') + \epsilon$$

- 1. If the realizability assumption holds, then agnostic PAC learning provides the same guarantee as PAC learning. In that sense, agnostic PAC learning generalizes the definition of PAC learning.
- When the realizability assumption does not hold, no learner can guarantee an arbitrarily small error. A learner can success if its error is not much larger than the best error achievable by a predictor from the class H while in PAC learning the learner is required to achieve a small error in absolute term.

Agnostic PAC Learnability for general loss functions

Definition (Generalized loss function)

Given any set H and some domain $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$, let ℓ be any function from $H \times \mathcal{Z}$ to the set of nonnegative real numbers, $\ell : H \times \mathcal{Z} \mapsto \mathbb{R}_+$. We call such functions loss functions.

Definition (Risk function)

The risk function is the expected loss of $h \in H$ with respect to a probability distribution \mathcal{D} over \mathcal{Z} ,

$$\mathsf{R}(h) = \mathop{\mathbb{E}}_{z \sim \mathcal{D}} \left[\ell(h, z) \right].$$

Definition (Agnostic PAC Learnability for general loss functions)

A hypothesis class H is agnostic PAC learnable with respect to a set $\mathcal Z$ and a loss function $\ell: H \times \mathcal Z \mapsto \mathbb R_+$, if there exist a function $m_H: (0,1)^2 \mapsto \mathbb N$ and a learning algorithm $\mathcal A$ with the following property: for every $\epsilon, \delta \in (0,1)$ and for every distribution $\mathcal D$ over $\mathcal Z = \mathcal X \times \mathcal Y$, when running learning algorithm $\mathcal A$ on $m \geq m_H(\epsilon, \delta)$ i.i.d. examples generated by $\mathcal D$, the algorithm returns a hypothesis $h \in H$ such that, with probability of at least $(1-\delta)$ the following equation holds,

$$R(h) \leq \min_{h' \in H} R(h') + \epsilon$$

where $R(h) = \mathbb{E}_{z \sim \mathcal{D}} [\ell(h, z)]$.

Uniform convergence

Definition (Empirical risk minimization algorithm)

Let H be the hypotheses set and S be the training set. An empirical risk minimization algorithm receives a training set S and a hypotheses set H and outputs a hypothesis $h \in H$ such that

$$h = \underset{h' \in H}{\operatorname{arg min}} \mathbf{\hat{R}}(h').$$

- 1. Given a hypothesis class, H, an ERM algorithm receives a training sample, S and evaluates the risk of each $h \in H$ on S and outputs a member of H that minimizes this empirical risk.
- 2. The hope is that an h that minimizes the empirical risk with respect to S is a risk minimizer (or has risk close to the minimum) with respect to the true data probability distribution as well.

- 1. It suffices to ensure that the empirical risks of all members of H are good approximations of their true risk.
- 2. In another word, we need that uniformly over all hypotheses in the hypothesis class, the empirical risk will be close to the true risk.

Definition (ϵ -representative sample)

A training set S is called ϵ -representative (w.r.t. domain Z, hypothesis class H, loss function ℓ , and distribution \mathcal{D}) if $\forall h \in H$, we have

$$|\mathbf{R}(h) - \mathbf{\hat{R}}(h)| \leq \epsilon.$$

Lemma

Let the training set S is $\frac{\epsilon}{2}$ -representative (w.r.t. domain \mathcal{Z} , hypothesis class H, loss function ℓ , and distribution \mathcal{D}). Then, any output of ERM algorithm (h_s), satisfies

$$R(h_s) \leq \min_{h \in H} R(h) + \epsilon.$$

Proof.

For every $h \in H$, we have

$$\begin{split} \mathbf{R}(h_s) & \leq \hat{\mathbf{R}}(h_s) + \frac{\epsilon}{2} \\ & \leq \hat{\mathbf{R}}(h) + \frac{\epsilon}{2} \\ & \leq \mathbf{R}(h) + \frac{\epsilon}{2} \end{split} \qquad \text{Because h_s is an ERM predictor, hence $\hat{\mathbf{R}}(h_s) \leq \hat{\mathbf{R}}(h)$.} \\ & \leq \mathbf{R}(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2} \end{aligned} \qquad \text{Because S is $\frac{\epsilon}{2}$-representative, so $\hat{\mathbf{R}}(h) \leq \mathbf{R}(h) + \frac{\epsilon}{2}$.} \\ & = \mathbf{R}(h) + \epsilon \end{split}$$

This lemma implies that to ensure that the ERM rule is an agnostic PAC learner, it suffices to show that with probability of at least $(1 - \delta)$ over the random choice of a training set, it will be an ϵ -representative training set.

Definition (Uniform convergence)

A hypothesis class H has uniform convergence property (w.r.t a set $\mathcal Z$ and a loss function ℓ), if there exist a function $m_H^{UC}: (0,1)^2 \mapsto \mathbb N$ such that for every $\epsilon, \delta \in (0,1)$ and for every probability distribution $\mathcal D$ over $\mathcal Z$, if S is a sample of $m \geq m_H^{UC}(\epsilon,\delta)$ examples drawn i.i.d according to $\mathcal D$, then with probability of at least $(1-\delta)$, the training set S is ϵ -representative.

The term **uniform** here refers to having a **fixed sample size** that works for all members of H and over all possible probability distributions over the domain.

Here, we used the fact that for every $h \in H$, the empirical risk concentrates around the true risk with high probability. This concept known as uniform convergence.

Theorem

If a class H has the uniform convergence property with a function m_H^{UC} , then the class is agnostically PAC learnable with the sample complexity $m_H(\epsilon, \delta) \leq m_H^{UC}(\frac{\epsilon}{2}, \delta)$.

Proof.

- 1. Suppose that H has the uniform convergence property with a function m_H^{UC} .
- 2. For every $\epsilon, \delta \in (0,1)$, if S is a sample of size m, where $m \geq m_H^{UC}(\frac{\epsilon}{2},\delta)$, then with probability at least $(1-\delta)$, sample S is $\frac{\epsilon}{2}$ -representative. This means that for all $h \in H$ we have

$$\mathsf{R}(h) \leq \mathbf{\hat{R}}(h_s) + rac{\epsilon}{2},$$

or

$$\mathbf{R}(h) \le \min_{h' \in H} \mathbf{\hat{R}}(h') + \frac{\epsilon}{2}$$
$$\le \min_{h' \in H} \mathbf{R}(h') + \epsilon$$

3. Hence H is agnostically PAC-learnable with $m_H(\epsilon, \delta) = m_H^{UC}(\frac{\epsilon}{2}, \delta)$.

Agnostic PAC-Learning for finite *H*

Theorem

Let H be a finite hypothesis class. Then, H enjoys the uniform convergence property with sample complexity

$$m_H^{UC}(\epsilon,\delta) \leq \frac{\ln\left(\frac{2|H|}{\delta}\right)}{2\epsilon^2}$$

and is therefore PAC learnable by the ERM algorithm.

Theorem (Hoeffding inequality)

Let θ_1,\ldots,θ_m be be a sequence of i.i.d. random variables and assume that for all i, we have $\mathbb{E}\left[\theta_i\right]=\mu$ and $\mathbb{P}\left[a\leq\theta_i\leq b\right]=1$. Then, for any $\epsilon>0$

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right]\leq2\exp\left(-\frac{2m\epsilon^{2}}{(b-a)^{2}}\right)$$

Proof.

To show that uniform convergence holds we follow a two step argument.

- 1. The first step applies the union bound.
 - 1.1 Fix some ϵ, δ .
 - 1.2 We need to find a sample size m that guarantees that for any \mathcal{D} , with probability of at least (1δ) of the choice of S sampled i.i.d. from \mathcal{D} , for all $h \in H$ we have $|\hat{\mathbf{R}}(h) \mathbf{R}(h)| \le \epsilon$.
 - 1.3 That is,

$$\mathbb{P}\left[orall h \in H \ \Big| \ \Big| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \Big| \leq \epsilon
ight] \geq (1 - \delta)$$

1.4 Equivalently, we need to show that

$$\mathbb{P}\left[\exists h \in H \mid \left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \delta$$

$$\bigcup_{h \in H} \mathbb{P}\left[\left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \delta$$

$$\bigcup_{h \in H} \mathbb{P}\left[\left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \sum_{h \in H} \mathbb{P}\left[\left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \delta$$

Proof (Cont.).

- 2. The second step employs a measure concentration inequality.
 - 2.1 This step will argue that each summand of the right-hand side of this inequality is small enough.
 - 2.2 That is, we will show that for any fixed hypothesis, h, value of $|\hat{R}(h) R(h)|$ is likely to be small.
 - 2.3 Recall that

$$\mathbf{R}(h) = \underset{z \sim \mathcal{D}}{\mathbb{E}} \left[\ell(h, z) \right]$$
$$\hat{\mathbf{R}}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$$

Because each z_i is sampled i.i.d. from \mathcal{D} .

2.4 By the linearity of expectation, it follows that

$$\mathsf{R}(h) = \mathbb{E}\left[\hat{\mathsf{R}}(h)
ight]$$

- 2.5 Hence, quantity $|\hat{\mathbf{R}}(h) \mathbf{R}(h)|$ is deviation of random variable $\hat{\mathbf{R}}(h)$ from its expectation.
- 2.6 We must show that $\hat{\mathbf{R}}(h)$ is concentrated around its expected value.

Proof (Cont.).

- 3. The second step employs a measure concentration inequality (cont.).
 - 3.1 Let $\theta_i = \ell(h, z_i)$.
 - 3.2 Since h is fixed and z_1, \ldots, z_m are sampled i.i.d., then $\theta_1, \ldots, \theta_m$ are also i.i.d. random variables. Hence,

$$\hat{\mathsf{R}}(h) = \frac{1}{m} \sum_{i=1}^{m} \theta_{i} \mathbb{P} \left[\left| \frac{1}{m} \sum_{i=1}^{m} \theta_{i} - \mu \right| > \epsilon \right]$$

$$\mathsf{R}(h) = \mu$$

- 3.3 Also assume that $\ell \in [0,1]$, then $\theta_i \in [0,1]$.
- 3.4 Using Hoeffding's inequality

$$\mathbb{P}\left[\exists h \in H \mid \left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] = \sum_{h \in H} \mathbb{P}\left[\left| \frac{1}{m} \sum_{i=1}^{m} \theta_i - \mu \right| > \epsilon \right]$$

$$\leq \sum_{h \in H} 2 \exp\left(-2m\epsilon^2\right)$$

$$= 2|H| \exp\left(-2m\epsilon^2\right) \leq \delta$$

3.5 Solving the above inequality completes the proof of the theorem.

Summary

- 1. We have shown that **finite hypothesis classes enjoy the uniform convergence property** and are hence **agnostic PAC learnable**.
- 2. What happen if |H| is not finite?

Reading

- 1. Chapters 3 & 4 of Understanding machine learning: From theory to algorithms (Shalev-Shwartz and Ben-David 2014).
- 2. Chapter 2 of Foundations of machine learning (Mohri, Rostamizadeh, and Talwalkar 2018).

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine Learning. Second Edition. MIT Press.

Shalev-Shwartz, Shai and Shai Ben-David (2014). *Understanding machine learning: From theory to algorithms*. Cambridge University Press.

Questions?