# Machine learning theory

# Probably approximately correct model

Hamid Beigy

Sharif University of Technology

February 25, 2023



## Table of contents



- 1. Introduction
- 2. Probably approximately correct model
- 3. Learning bound for finite H
- 4. Agnostic probably approximately correct model
- 5. Uniform convergence
- 6. Agnostic PAC-Learning for finite H
- 7. Summary
- 8. Reading

Introduction



1. The consistency model is not a particularly great model of learning, but it's simple and good to start.

## **Definition (Consistency model)**

We say that algorithm  $\mathcal{A}$  learns the concept class  $\mathcal{C}$  in the consistency model if given any training set S, the algorithm produces a hypothesis (concept)  $c \in \mathcal{C}$  consistent with S if one exists, and outputs "there is no consistent concept" otherwise.

### **Definition (Learnability of consistency model)**

We say that a class  $\mathcal C$  is learnable in the consistency model if there exists an efficient algorithm  $\mathcal A$  that learns  $\mathcal C$  in the consistency model.



- 1. Here efficient means that the algorithm runs in polynomial time in terms of the size of the set S and the size of each  $x \in S$ .
- 2. The examples given in the previous lecture showed a few shortcomings of the consistency model.
  - A class  $\mathcal{C}$  can be learnable while a subclass of  $\mathcal{C}$  can be unlearnable.
  - The consistency model yields a concept that tells us nothing about the accuracy of the model on new data (generalization).
  - The consistency model has a practical problem in that training data that contains noise is not handled in a robust way.

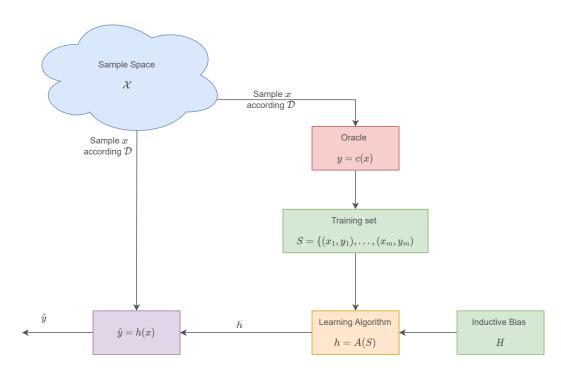


- 1. We need to add the distribution from which training and test examples are generated.
- 2. We assume that the following conditions hold.
  - ullet Training and test examples are generated from some unknown distribution  ${\cal D}.$
  - Each example is generated independently.
  - There exists a function  $c \in \mathcal{C}$  (concept) such that each example labeled according to c.
  - We would like the results to be distribution-free (the results hold for any target distribution).
- 3. Learning algorithm receives training examples and outputs a hypothesis  $h \in H$ ...
- 4. Hypothesis h makes a mistake if  $h(x) \neq c(x)$ .
- 5. We measure error of learning algorithm using generalization error.

$$\mathsf{R}(h) = \mathop{\mathbb{P}}_{x \sim \mathcal{D}} \left[ h(x) \neq c(x) \right]$$

6. We aim to have R(h) be small.







1. We aim to have R(h) be small.

### **Definition (Approximately correct hypothesis)**

Hypothesis h is called approximately correct if  $\mathbf{R}(h) \leq \epsilon$  (for small  $\epsilon$ ).

- 2. Parameter  $\epsilon$  is called accuracy parameter.
- 3. We can't always guarantee that  $\mathbf{R}(h) \leq \epsilon$  because, depending on training set, the training data may be a very unrepresentative of the domain set.
- 4. We require that we are able to learn a good approximation with high probability.
- 5. In particular, we require that  $\mathbf{R}(h) \leq \epsilon$  with probability at least  $1 \delta$ .
- 6. This hypothesis is called **probably approximately correct**.
- 7. Parameter  $\delta$  is called confidence parameter.

Probably approximately correct model



## **Definition (PAC Learnability)**

A concept class  $\mathcal C$  is **PAC-learnable** by hypothesis class H if there exists an algorithm  $\mathcal A$ , such that for all target concepts  $c \in \mathcal C$ , for all distributions  $\mathcal D$  on  $\mathcal X$ , for all  $\epsilon, \delta \in (0,1)$ , the algorithm  $\mathcal A$  takes

$$m \geq m_H(\epsilon, \delta) = extit{poly}\left(rac{1}{\epsilon}, rac{1}{\delta}, n, |c|
ight)$$

examples in form of  $S = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_m, c(\mathbf{x}_m))\}$ , where each  $\mathbf{x}_i$  is chosen from space  $\mathcal{X}$  at random according to the target distribution  $\mathcal{D}$ , and produces a hypothesis  $h \in \mathcal{H}$ , such that

$$\mathop{\mathbb{P}}_{\mathcal{S}\sim\mathcal{D}^m}[\mathsf{R}(\mathit{h})\leq\epsilon]\geq(1-\delta)$$



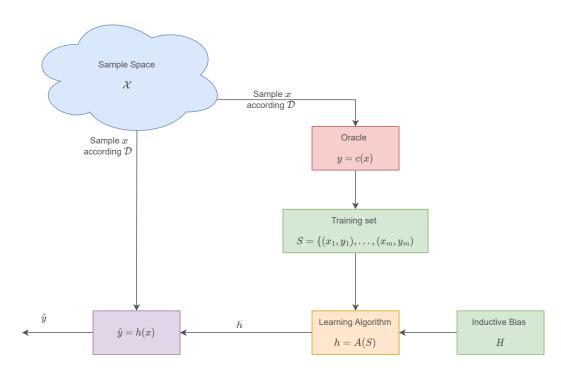
## **Definition (Sample complexity)**

Function  $m_H: (0,1)^2 \mapsto \mathbb{N}$  that measures how many samples are required to guarantee PAC learnability of H, is called **sample complexity**.

## **Definition (Efficiently PAC-learnable)**

A concept class  $\mathcal C$  is **efficiently PAC-learnable** by hypothesis class H if there exists an algorithm  $\mathcal A$  that runs in  $\operatorname{poly}\left(\frac{1}{\epsilon},\frac{1}{\delta},n,|c|\right)$  time and PAC-learns  $\mathcal C$  using H.

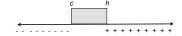






### **Example (Learning the threshold function)**

- 1. Let  $\mathcal{X} = \mathbb{R}$  and  $\mathcal{C} = \{positive \ half \ lines\}.$
- 2. For some point c, the corresponding positive half line is the region of  $\mathbb{R}$  designated by  $[c, \infty)$ .
- 3. We can treat  $c \in \mathcal{C}$  as a point that separates the positive and negative regions of  $\mathbb{R}$  .

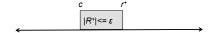


- 4. There will be a region between c and h in which h will incorrectly label new training points.
- 5. We want to find a h such that this region have size  $\leq \epsilon$  in terms of true distribution  $\mathcal{D}$ .
- 6. We have two bad cases:

 $B^+$  h lies more than  $\epsilon$  to the right of c.

 $B^-$  h lies more than  $\epsilon$  to the left of c.

7. First considering the likelihood of  $B^+$ .



- 8. Let  $R^+$  be the smallest region with c as its left border whose probability mass is at least  $\epsilon$ .
- 9. That is  $R^+ = [c, r^+]$ , where  $r^+ = \sup\{r \ge c \mid \mathbb{P}[[c, r)] \le \epsilon\}$ .



## **Example (Learning the threshold function (cont.))**

- 1. Let A be learning algorithm that returns the value of the smallest positive example.
- 2. Hence, h falls to the right of  $r^+$  only if all training examples lie outside of  $R^+$ .
- 3. Therefore,  $B^+$  only occurs when no training points fall in  $R^+$ .
- 4. Thus, if  $R^+$  has size  $\epsilon$ , then  $\mathbb{P}\left[x_1 \notin R^+\right] \leq (1 \epsilon)$ .
- 5. Given *m* training examples, we have

$$\mathbb{P}\left[B^{+}\right] = \mathbb{P}\left[\left(x_{1} \notin R^{+}\right) \wedge \ldots \wedge \left(x_{m} \notin R^{+}\right)\right]$$
$$= \mathbb{P}\left[x_{1} \notin R^{+}\right] \times \ldots \times \mathbb{P}\left[x_{m} \notin R^{+}\right] \leq \left(1 - \epsilon\right)^{m}$$

6. We have bad cases, hence

$$\mathbb{P}\left[\mathbf{R}(h) > \epsilon\right] = \mathbb{P}\left[B^{+} \vee B^{-}\right]$$

$$\leq \mathbb{P}\left[B^{+}\right] + \mathbb{P}\left[B^{-}\right]$$

$$\leq 2(1 - \epsilon)^{m}$$

$$\leq 2e^{-\epsilon m} \leq \delta. \qquad using \ 1 + x \leq e^{x}$$

- 7. Then  $m \geq \frac{1}{\epsilon} \ln \left( \frac{2}{\delta} \right)$ .
- 8. Rearranging terms, we see what with probability of at least  $(1-\delta)$  , we have  $\mathbf{R}(h) \leq \frac{1}{m} \ln \left( \frac{2}{\delta} \right)$ .

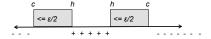


## **Example (Learning an interval)**

1. Let  $\mathcal{X} = \mathbb{R}$  and  $\mathcal{C} = \{intervals\}$ . In this concept class, we have

$$c(x) = \begin{cases} 1 & \text{if } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$

2. We have 2 boundary error regions. We force size of each region at most  $\frac{\epsilon}{2}$ .



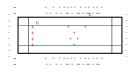
- 3. Hence, we have 4 possible bad events.
- 4. A similar analysis as for the previous example, we have sample complexity of

$$m_H(\epsilon,\delta) \geq rac{2}{\epsilon} \ln \left(rac{4}{\delta}
ight)$$



### **Example (Learning axis-aligned rectangles)**

1. Let  $\mathcal{X} = \mathbb{R}^2$  and  $\mathcal{C} = \{axis - aligned rectangles\}$ . In this concept class, we have



$$c(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \text{ belongs to the given rectangle} \\ 0 & \text{otherwise} \end{cases}$$

- 2. We have 4 boundary error regions. We force size of each region at most  $\frac{\epsilon}{4}$ .
- 3. A similar analysis as for the previous example, we have sample complexity of

$$m_H(\epsilon,\delta) \geq rac{4}{\epsilon} \ln \left(rac{4}{\delta}
ight)$$

### **Example (Learning axis-aligned hyper-rectangles)**

Find the sample complexity of  $\mathcal{X} = \mathbb{R}^n$  and  $\mathcal{C} = \{axis - aligned \ hyper - rectangles\}$ .

Learning bound for finite H



## Theorem (Learning bound for finite H)

Let  $H = \{h \mid h : \mathcal{X} \mapsto \{0,1\}\}$  be a finite set of functions and  $\mathcal{A}$  an algorithm that for any target concept  $c \in H$  and sample S, returns a consistent hypothesis  $h \in H$ . Then, for any  $\delta > 0$ , with probability at least  $(1 - \delta)$ , we have

$$m_H(\epsilon, \delta) \geq rac{1}{\epsilon} \left( \log |H| + \log \left( rac{1}{\delta} 
ight) 
ight)$$
  $\mathsf{R}(h) \leq rac{1}{m} \left( \log |H| + \log \left( rac{1}{\delta} 
ight) 
ight)$ 

## Proof (Learning bound for finite H).

For any  $\epsilon > 0$ , define  $H_{\epsilon} = \{h \in H \mid \mathbf{R}(h) > \epsilon\}$ . Then,

$$\mathbb{P}\left[\exists h \in H_{\epsilon} \mid \hat{\mathbf{R}}(h) = 0\right] = \mathbb{P}\left[\left(\hat{\mathbf{R}}(h_{1}) = 0\right) \vee \left(\hat{\mathbf{R}}(h_{2}) = 0\right) \vee \ldots \vee \left(\hat{\mathbf{R}}(h_{|H_{\epsilon}|}) = 0\right]\right]$$

$$\leq \sum_{h_{i} \in H_{\epsilon}} \mathbb{P}\left[\hat{\mathbf{R}}(h_{i}) = 0\right] \leq \sum_{h_{i} \in H_{\epsilon}} (1 - \epsilon)^{m}$$

$$\leq |H|(1 - \epsilon)^{m} \leq |H|e^{-m\epsilon} \leq \delta$$



## Corollary

This theorem shows that when hypothesis space H is finite,

- 1. a consistent algorithm A is a PAC-learning algorithm,
- 2. specifies an upper bound on how much data we need to achieve a certain general error rate.
- 3. it relates a general relation between learning performance and the size of the hypothesis space, and the number of training examples,
- 4. the more data we have, the lower the upper bound of error we can achieve, and
- 5. the smaller the hypothesis size is, the less data we need to achieve a certain general error rate.

In this framework, we assumed that  $\mathcal{C} \subseteq H$ . This case is called realizable case.



### **Example (PAC-Learning of conjunctions)**

- 1. Let  $\mathcal{X} = \{0,1\}^n$  be the set of all *n*-bit vectors.
- 2. Let the concept class C consist of all conjunctions (AND of a subset of the (possibly negated) variables, such as  $c(x) = x_2 \wedge x_7 \wedge x_9$ .
- 3. The hypothesis space has  $|H| = 3^n$  different hypotheses, then the sample complexity

$$m_{H}(\epsilon, \delta) \geq \frac{1}{\epsilon} \left( \log|H| + \log\left(\frac{1}{\delta}\right) \right)$$

$$= \frac{1}{\epsilon} \left( \log 3^{n} + \log\left(\frac{1}{\delta}\right) \right)$$

$$= \frac{1}{\epsilon} \left( n \log 3 + \log\left(\frac{1}{\delta}\right) \right)$$

- 4. This means that a polynomial number of samples will do to get a good enough hypothesis with high enough probability.
- 5. Therefore the class of conjunctions is **PAC learnable**.
- 6. Let  $\delta = 0.02$ ,  $\epsilon = 0.1$ , and n = 10. Then  $m_H(\epsilon, \delta) \ge 149$ .
- 7. The computation complexity cost per training example is in O(n).



## **Example (PAC-Learning of DNF)**

- 1. Let  $\mathcal{X} = \{0,1\}^n$  be the set of all *n*-bit vectors.
- 2. Let the concept class  $\mathcal C$  consist of all DNF that is the OR of an arbitrary number of arbitrary-length conjunctions.
- 3. For example, we have  $c(x) = (x_2 \wedge x_7 \wedge x_8) \vee (x_4 \wedge \overline{x}_9) \vee (x_3 \wedge \overline{x}_5 \wedge x_7)$ .
- 4. The hypothesis space has  $|H| = 2^{2^n}$  different hypotheses, then the sample complexity

$$m_H(\epsilon, \delta) \geq rac{1}{\epsilon} \left( \log |H| + \log \left( rac{1}{\delta} 
ight) 
ight) \ = rac{1}{\epsilon} \left( \log 2^{2^n} + \log \left( rac{1}{\delta} 
ight) 
ight) \ = rac{1}{\epsilon} \left( 2^n \log 2 + \log \left( rac{1}{\delta} 
ight) 
ight)$$

- 5. This does not tell us that the class is PAC learnable, because the bound is not a tight bound.
- 6. This bound only shows that we cannot use the general learning bound to show PAC learnability.
- 7. The question of whether this class is PAC learnable or not is an open problem.





- 1. We assumed that there exists a target function  $c \in \mathcal{C} \subseteq H$  that perfectly labels the data.
- 2. This is not always a valid assumption to make.
  - There could be random noise in the data, sometimes causing a label to be flipped.
  - There is a perfect target function c, but it is not in hypotheses space that we are considering, i.e.  $c \notin H$ .
  - There is so much randomness in the labels that no function comes close to labeling all of our data correctly. In this, we would like to remove the assumption of a perfect target function.
- 3. This is often referred to as the agnostic learning setting, since we make no assumptions about the origin of labels.
- 4. It is also referred to as unrealizable setting, in contrast with realizable setting.
- 5. We need to update all of our definitions, assumptions, and goals for this new setting.

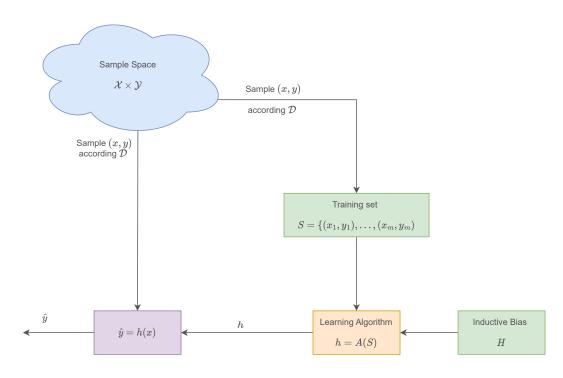


- 1. We now assume that there exists a joint distribution  $\mathcal{D}$  over pairs of values  $(\mathbf{x}, y)$  where  $\mathbf{x}$  is the input point and y is the corresponding label.
- 2. We now need to update our notion of error.

$$\mathsf{R}(h) = \mathop{\mathbb{P}}_{(\mathsf{x}, \mathsf{y}) \sim \mathcal{D}} \left[ h(\mathsf{x}) \neq \mathsf{y} \right]$$

- 3. We can still model a perfect target function as a joint probability distribution for which the label y is deterministically equal to c(x) conditioned on the input x.
- 4. Previously, our goal was to find a hypothesis  $h \in H$  such that  $\mathbf{R}(h) \leq \epsilon$ . Here, such a function might not exist.
- 5. We can only possibly hope to find a function as good as the best function  $h \in H$ .
- 6. Therefore, our new goal is to output a function  $h \in H$  such that R(h) is close to  $\min_{h' \in H} R(h')$ .







## **Definition (Agnostic PAC Learnability)**

A hypothesis class H is agnostic PAC learnable, if there exist a function  $m_H:(0,1)^2\mapsto\mathbb{N}$  and a learning algorithm  $\mathcal{A}$  with the following property: for every  $\epsilon,\delta\in(0,1)$  and for every distribution  $\mathcal{D}$  over  $\mathcal{X}\times\mathcal{Y}$ , when running the learning algorithm  $\mathcal{A}$  on  $m\geq m_H(\epsilon,\delta)$  i.i.d. examples generated by  $\mathcal{D}$ , the algorithm returns a hypothesis  $h\in H$  such that, with probability of at least  $(1-\delta)$  the following equation holds (over the choice of the m training examples),

$$R(h) \leq \min_{h' \in H} R(h') + \epsilon$$

- 1. If the realizability assumption holds, then agnostic PAC learning provides the same guarantee as PAC learning. In that sense, agnostic PAC learning generalizes the definition of PAC learning.
- When the realizability assumption does not hold, no learner can guarantee an arbitrarily small error. A learner can success if its error is not much larger than the best error achievable by a predictor from the class H while in PAC learning the learner is required to achieve a small error in absolute term.

## Agnostic PAC Learnability for general loss functions



#### **Definition (Generalized loss function)**

Given any set H and some domain  $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ , let  $\ell$  be any function from  $H \times \mathcal{Z}$  to the set of nonnegative real numbers,  $\ell : H \times \mathcal{Z} \mapsto \mathbb{R}_+$ . We call such functions loss functions.

## Definition (Risk function)

The risk function is the expected loss of  $h \in H$  with respect to a probability distribution  $\mathcal{D}$  over  $\mathcal{Z}$ ,

$$\mathsf{R}(h) = \mathop{\mathbb{E}}_{z \sim \mathcal{D}} \left[ \ell(h, z) \right].$$

## Definition (Agnostic PAC Learnability for general loss functions)

A hypothesis class H is agnostic PAC learnable with respect to a set  $\mathcal Z$  and a loss function  $\ell: H \times \mathcal Z \mapsto \mathbb R_+$ , if there exist a function  $m_H: (0,1)^2 \mapsto \mathbb N$  and a learning algorithm  $\mathcal A$  with the following property: for every  $\epsilon, \delta \in (0,1)$  and for every distribution  $\mathcal D$  over  $\mathcal Z = \mathcal X \times \mathcal Y$ , when running learning algorithm  $\mathcal A$  on  $m \geq m_H(\epsilon, \delta)$  i.i.d. examples generated by  $\mathcal D$ , the algorithm returns a hypothesis  $h \in H$  such that, with probability of at least  $(1-\delta)$  the following equation holds,

$$R(h) \leq \min_{h' \in H} R(h') + \epsilon$$

where  $R(h) = \mathbb{E}_{z \sim \mathcal{D}} [\ell(h, z)]$ .

**Uniform convergence** 



## Definition (Empirical risk minimization algorithm)

Let H be the hypotheses set and S be the training set. An empirical risk minimization algorithm receives a training set S and a hypotheses set H and outputs a hypothesis  $h \in H$  such that

$$h = \underset{h' \in H}{\operatorname{arg min}} \mathbf{\hat{R}}(h').$$

- 1. Given a hypothesis class, H, an ERM algorithm receives a training sample, S and evaluates the risk of each  $h \in H$  on S and outputs a member of H that minimizes this empirical risk.
- 2. The hope is that an h that minimizes the empirical risk with respect to S is a risk minimizer (or has risk close to the minimum) with respect to the true data probability distribution as well.



- 1. It suffices to ensure that the empirical risks of all members of H are good approximations of their true risk.
- 2. In another word, we need that uniformly over all hypotheses in the hypothesis class, the empirical risk will be close to the true risk.

### **Definition** ( $\epsilon$ -representative sample)

A training set S is called  $\epsilon$ -representative (w.r.t. domain Z, hypothesis class H, loss function  $\ell$ , and distribution  $\mathcal{D}$ ) if  $\forall h \in H$ , we have

$$|\mathbf{R}(h) - \mathbf{\hat{R}}(h)| \leq \epsilon.$$



#### Lemma

Let the training set S is  $\frac{\epsilon}{2}$ -representative (w.r.t. domain  $\mathcal{Z}$ , hypothesis class H, loss function  $\ell$ , and distribution  $\mathcal{D}$ ). Then, any output of ERM algorithm ( $h_s$ ), satisfies

$$R(h_s) \leq \min_{h \in H} R(h) + \epsilon.$$

#### Proof.

For every  $h \in H$ , we have

$$\begin{split} \mathbf{R}(h_s) & \leq \hat{\mathbf{R}}(h_s) + \frac{\epsilon}{2} \\ & \leq \hat{\mathbf{R}}(h) + \frac{\epsilon}{2} \\ & \leq \mathbf{R}(h) + \frac{\epsilon}{2} \end{split} \qquad \text{Because $h_s$ is an ERM predictor, hence $\hat{\mathbf{R}}(h_s) \leq \hat{\mathbf{R}}(h)$.} \\ & \leq \mathbf{R}(h) + \frac{\epsilon}{2} + \frac{\epsilon}{2} \end{aligned} \qquad \text{Because $S$ is $\frac{\epsilon}{2}$-representative, so $\hat{\mathbf{R}}(h) \leq \mathbf{R}(h) + \frac{\epsilon}{2}$.} \\ & = \mathbf{R}(h) + \epsilon \end{split}$$

This lemma implies that to ensure that the ERM rule is an agnostic PAC learner, it suffices to show that with probability of at least  $(1 - \delta)$  over the random choice of a training set, it will be an  $\epsilon$ -representative training set.



## Definition (Uniform convergence)

A hypothesis class H has uniform convergence property (w.r.t a set  $\mathcal Z$  and a loss function  $\ell$ ), if there exist a function  $m_H^{UC}: (0,1)^2 \mapsto \mathbb N$  such that for every  $\epsilon, \delta \in (0,1)$  and for every probability distribution  $\mathcal D$  over  $\mathcal Z$ , if S is a sample of  $m \geq m_H^{UC}(\epsilon,\delta)$  examples drawn i.i.d according to  $\mathcal D$ , then with probability of at least  $(1-\delta)$ , the training set S is  $\epsilon$ -representative.

The term **uniform** here refers to having a **fixed sample size** that works for all members of H and over all possible probability distributions over the domain.

Here, we used the fact that for every  $h \in H$ , the empirical risk concentrates around the true risk with high probability. This concept known as uniform convergence.



#### Theorem

If a class H has the uniform convergence property with a function  $m_H^{UC}$ , then the class is agnostically PAC learnable with the sample complexity  $m_H(\epsilon, \delta) \leq m_H^{UC}(\frac{\epsilon}{2}, \delta)$ .

#### Proof.

- 1. Suppose that H has the uniform convergence property with a function  $m_H^{UC}$ .
- 2. For every  $\epsilon, \delta \in (0,1)$ , if S is a sample of size m, where  $m \geq m_H^{UC}(\frac{\epsilon}{2},\delta)$ , then with probability at least  $(1-\delta)$ , sample S is  $\frac{\epsilon}{2}$ -representative. This means that for all  $h \in H$  we have

$$\mathsf{R}(h) \leq \mathbf{\hat{R}}(h_s) + rac{\epsilon}{2},$$

or

$$\mathbf{R}(h) \le \min_{h' \in H} \mathbf{\hat{R}}(h') + \frac{\epsilon}{2}$$
$$\le \min_{h' \in H} \mathbf{R}(h') + \epsilon$$

3. Hence H is agnostically PAC-learnable with  $m_H(\epsilon, \delta) = m_H^{UC}(\frac{\epsilon}{2}, \delta)$ .

Agnostic PAC-Learning for finite *H* 



#### **Theorem**

Let H be a finite hypothesis class. Then, H enjoys the uniform convergence property with sample complexity

$$m_H^{UC}(\epsilon,\delta) \leq \frac{\ln\left(\frac{2|H|}{\delta}\right)}{2\epsilon^2}$$

and is therefore PAC learnable by the ERM algorithm.

### Theorem ( Hoeffding inequality)

Let  $\theta_1,\ldots,\theta_m$  be be a sequence of i.i.d. random variables and assume that for all i, we have  $\mathbb{E}\left[\theta_i\right]=\mu$  and  $\mathbb{P}\left[a\leq\theta_i\leq b\right]=1$ . Then, for any  $\epsilon>0$ 

$$\mathbb{P}\left[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon\right]\leq2\exp\left(-\frac{2m\epsilon^{2}}{(b-a)^{2}}\right)$$



#### Proof.

To show that uniform convergence holds we follow a two step argument.

- 1. The first step applies the union bound.
  - 1.1 Fix some  $\epsilon, \delta$ .
  - 1.2 We need to find a sample size m that guarantees that for any  $\mathcal{D}$ , with probability of at least  $(1 \delta)$  of the choice of S sampled i.i.d. from  $\mathcal{D}$ , for all  $h \in H$  we have  $|\hat{\mathbf{R}}(h) \mathbf{R}(h)| \le \epsilon$ .
  - 1.3 That is,

$$\mathbb{P}\left[ orall h \in H \ \Big| \ \Big| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \Big| \leq \epsilon 
ight] \geq (1 - \delta)$$

1.4 Equivalently, we need to show that

$$\mathbb{P}\left[\exists h \in H \mid \left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \delta$$

$$\bigcup_{h \in H} \mathbb{P}\left[ \left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \delta$$

$$\bigcup_{h \in H} \mathbb{P}\left[ \left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \sum_{h \in H} \mathbb{P}\left[ \left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] < \delta$$



## Proof (Cont.).

- 2. The second step employs a measure concentration inequality.
  - 2.1 This step will argue that each summand of the right-hand side of this inequality is small enough.
  - 2.2 That is, we will show that for any fixed hypothesis, h, value of  $|\hat{R}(h) R(h)|$  is likely to be small.
  - 2.3 Recall that

$$\mathbf{R}(h) = \underset{z \sim \mathcal{D}}{\mathbb{E}} \left[ \ell(h, z) \right]$$
$$\hat{\mathbf{R}}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_i)$$

Because each  $z_i$  is sampled i.i.d. from  $\mathcal{D}$ .

2.4 By the linearity of expectation, it follows that

$$\mathsf{R}(h) = \mathbb{E}\left[\hat{\mathsf{R}}(h)
ight]$$

- 2.5 Hence, quantity  $|\hat{\mathbf{R}}(h) \mathbf{R}(h)|$  is deviation of random variable  $\hat{\mathbf{R}}(h)$  from its expectation.
- 2.6 We must show that  $\hat{\mathbf{R}}(h)$  is concentrated around its expected value.



## Proof (Cont.).

- 3. The second step employs a measure concentration inequality (cont.).
  - 3.1 Let  $\theta_i = \ell(h, z_i)$ .
  - 3.2 Since h is fixed and  $z_1, \ldots, z_m$  are sampled i.i.d., then  $\theta_1, \ldots, \theta_m$  are also i.i.d. random variables. Hence,

$$\hat{\mathsf{R}}(h) = \frac{1}{m} \sum_{i=1}^{m} \theta_{i} \mathbb{P} \left[ \left| \frac{1}{m} \sum_{i=1}^{m} \theta_{i} - \mu \right| > \epsilon \right]$$

$$\mathsf{R}(h) = \mu$$

- 3.3 Also assume that  $\ell \in [0,1]$ , then  $\theta_i \in [0,1]$ .
- 3.4 Using Hoeffding's inequality

$$\mathbb{P}\left[\exists h \in H \mid \left| \hat{\mathbf{R}}(h) - \mathbf{R}(h) \right| > \epsilon \right] = \sum_{h \in H} \mathbb{P}\left[ \left| \frac{1}{m} \sum_{i=1}^{m} \theta_i - \mu \right| > \epsilon \right]$$

$$\leq \sum_{h \in H} 2 \exp\left(-2m\epsilon^2\right)$$

$$= 2|H| \exp\left(-2m\epsilon^2\right) \leq \delta$$

3.5 Solving the above inequality completes the proof of the theorem.

**Summary** 



- 1. We have shown that **finite hypothesis classes enjoy the uniform convergence property** and are hence **agnostic PAC learnable**.
- 2. What happen if |H| is not finite?

Reading



- 1. Chapters 3 & 4 of Understanding machine learning: From theory to algorithms (Shalev-Shwartz and Ben-David 2014).
- 2. Chapter 2 of Foundations of machine learning (Mohri, Rostamizadeh, and Talwalkar 2018).



Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine Learning. Second Edition. MIT Press.



Shalev-Shwartz, Shai and Shai Ben-David (2014). *Understanding machine learning: From theory to algorithms*. Cambridge University Press.

Questions?