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Introduction



Bounds on sample complexity

1. In last session, we showed that finite hypothesis class H is learnable in PAC model with the

following sample complexity.

m ≥ 1

ϵ

[
log|H|+ log

1

δ

]

where |H| is the length of description of hypothesis class H.

2. In last session, we showed that finite hypothesis class H is learnable in Agnostic PAC model with

the following sample complexity.

m ≥ 1

ϵ2

[
log|H|+ log

1

δ

]
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Bounds on sample complexity

1. How can we use these bounds for infinite hypothesis class H? (via discretization)

Let every h ∈ H is parametrized by k parameters.

Let each parameter is represented by b bits in computer.

Then every h ∈ H can be represented by 2kb bits.

The bound for PAC model is

m ≥ 1

ϵ

[
kb + log

1

δ

]
m = O

(
1

ϵ

[
k + log

1

δ

])

The bound for Agnostic PAC model is

m ≥ 1

ϵ2

[
kb + log

1

δ

]
m = O

(
1

ϵ2

[
k + log

1

δ

])

2. The above bounds show that the sample complexity is proportional to the number of parameters

of hypothesis.

3. It will be shown that some hypothesis classes have one parameter but they aren’t learnable in

these model.

4. This shows that |H| is not suitable measure of richness of a hypothesis class.
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Growth function



Growth function

1. Let S = {(x1, y1), (x2, y2), . . . , (xm, ym)} be training set and H be hypothesis class.

The growth function ofH is defined as

ΠH(m) = max
{S:|S|=m}

|ΠH(S)|.

For anyH, it measures the maximum number of different ways that functions inH can behave on any set of
points of a particular size. Note that |ΠH(m)| ≤ 2m.

Let’s look at some examples to get intuition.

Example 1. Let H be the class of one-dimensional threshold functions. Given a single point in (0, 1), there
are two ways that functions in H can label the point, so ΠH(1) = 2. Given two points, there are three ways
that functions in H can label them:

− −
− +

+ +

so ΠH(2) = 3. Given 3 distinct points in (0, 1), there are 4 different possibilities for h(S):

− − −
− − +

− + +

+ + +

so ΠH(3) = 4. In general, if we have m points, ΠH(m) = m + 1. Notice that this is significantly smaller
than the general bound 2m.

Example 2. Let H be the class of one-dimensional interval functions. Each function in the class is param-
eterized by two threshold values, a lower threshold (call this l) and an upper threshold (call this u). A point
x is labeled positive if x ∈ [l, u] and labeled negative otherwise.

Figure 1: Intervals

If we are given m distinct points in (0, 1). How many different behaviors can we observe? To answer
this question, it doesn’t matter where exactly the interval boundaries lie, what matters is which pairs of
points they lie between. Ourm points definem+1 regions in (0, 1). Then the number of different behaviors
equals the

(
m+1

2

)
different ways we can choose these regions plus 1 (which is the case obtained if the two

boundaries are in the same region and so all the points are labeled negative), which isO(m2). This is again
far less than the pessimistic exponential bound.

2

2. To define growth function, let us to define dichotomy.

Definition (Dichotomy)

Let x1, . . . , xm ∈ X , the dichotomies generated by H on these points are defined by

H(x1, . . . , xm) = {(h(x1), . . . , h(xm)) | h ∈ H}

Definition (Growth function)

The growth function counts the maximum number of dichotomies on any m points.

ΠH(m) = max
x1,...,xm∈X

|H(x1, . . . , xm)|

3. Thus, ΠH(m) is the maximum number of ways m points can be classified using H.
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Growth function

1. Considering one-dimensional threshold function H with the following training set.

X = {1, 2, 3, 4, 5, 6}

2. We have 7 distinct hypothesis for this hypothesis class.

Lemma (Growth function for one-dimensional threshold function)

Let X = {x1, x2, . . . , xm} be the training set. Then we have

ΠH(m) = m + 1

3. Let H be set of intervals. What is the growth function for this hypothesis class?

Theorem (Upper bound for growth function)

Let H be the hypothesis class, then for any training set of size m, the following inequality holds.

ΠH(m) ≤ 2m.
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Growth function based bounds

Theorem (For realizable case)

Let H be the hypothesis class. For all h ∈ H and for all δ > 0, with the probability of at least 1− δ,

the following inequality holds.

R(h) = O

(
ln ΠH(2m) + ln 2

δ

m

)
.

Theorem (For unrealizable case)

Let H be the hypothesis class. For all h ∈ H and for all δ > 0, with the probability of at least 1− δ,

the following inequality holds.

R(h) ≤ R̂(h) +

√
2 lnΠH(m)

m
+

√
ln 1

δ

2m
.

Homework: Prove the above theorems.
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VC-dimension

1. We showed that ΠH(m) ≤ 2m. But in most cases, this bound is not tight.

2. If we choose the size of the training set such that

ΠH(m) = 2m,

the hypothesis class H can classify all different labeling of S .

3. This leads to the definition of new complexity measure, VC-dimension.

Definition (Dichotomy)

A dichotomy of a set S is a partition of S into two disjoint subsets.

Definition (Shattering)

A set S is shattered by hypothesis space H iff for every dichotomy of S there exists some hypothesis

in H consistent with this dichotomy.
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VC-dimension

1. Formally, H shatters S if ΠH(m) = 2m.

Definition (VC-dimension)

The Vapnik-Chervonenkis (VC) dimension of H, denoted as VC(H), is the cardinality d of the largest

set S shattered by H. If arbitrarily large finite sets can be shattered by H, then VC(H) = ∞ or

VC(H) = max {m | ΠH(m) = 2m}

2. The definition of VC(H) is:

if there exists a set of d points that can be shattered by the classifier and there is no set of

d + 1 points that can be shattered by the classifier, then VC(H) = d .

3. The definition does not say:

any set of d points can be shattered by the classifier.
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VC-dimension of interval hypothesis class

1. Let H be the set of intervals on the real line such that h(x) = 1 iff x is in the interval.

2. How many points can be shattered by H?

Fall 2008 Learning Theory - Sofus A. Macskassy41

Example: Shattering an interval
� Let H be the set of intervals on the real line 

such that h(x)=1 iff x is in the interval.
� How many  points can be shattered by H?

� 2 points.  It cannot shatter 3. VC(H)=2

ü
ü
ü
û

3. It can shatter 2 points. It cannot shatter 3 points. Thus VC(H) = 2.
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VC-dimension of linear hypothesis class

1. Let H be the set of linear classifiers on the two-dimensional space.

2. How many points can be shattered by H?
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VC-dimension of linear hypothesis class

1. It can shatter 3 points. It cannot shatter 4 points. Thus VC(H) = 3.
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2. For d-dimensional linear classifier, we have VC(H) = d + 1
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VC-dimension of axis aligned rectangle hypothesis class

1. Let H be the set of axis aligned rectangle hypothesis class on the two-dimensional space.

2. How many points can be shattered by H?

  
 

VC dim. of axis parallel 
rectangles in 2d 

There is a placement of 4 pts that can be shattered ) VC dim ≥ 4  
32 

3. It can shatter 4 points. It cannot shatter 5 points. Thus VC(H) = 4.

VC dim. of axis parallel 
rectangles in 2d 

What’s the VC dim. of axis parallel rectangles in 2d? 
   

+ 
+ - 

- 

- 
- 

- + - - 
+ 

- 

- - 

- 
+ 

- 

+ 
- 

If VC dim = 4, then for all placements of 5 pts, there exists a labeling that 
can’t be shattered 

 

4 collinear 
2 in convex hull 1 in convex hull   

pentagon 
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VC-dimension of finite hypothesis classes

Theorem (VC-dimension of finite hypothesis classes)

For every finite hypothesis classes H, we have VC(H) ≤ log|H|.

Proof.

Let VC(H) = d . Hence, we have

ΠH(d) = 2d .

In other hand, for every set with size m > 1, we have ΠH(m) ≤ |H|.

Hence, we have 2d = ΠH(d) ≤ |H|.

By taking log from both sides of 2d = ΠH(d) ≤ |H|, the proof will be completed.

Example (VC of conjunction)

Let H be the conjunction of at most n literals. Then, we have

n ≤ VC(H) ≤ n log 3.

Prove it as a homework.
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VC-dimension (Sauer-Shelah Lemma)

Lemma (Sauer-Shelah Lemma)

Let H be a hypothesis classes with VC(H) = d , then for m ∈ N, we have

ΠH(m) ≤
d∑

i=0

(
m

i

)

Homework: Prove this Lemma by using induction on m + d .

Corollary

Let H be a hypothesis classes with VC(H) = d , then for m > d > 1, we have

ΠH(m) ≤
(
em

d

)d

14 / 39



VC-dimension

Proof.

From Sauer-Shelah Lemma, we have

ΠH(m) ≤
d∑

i=0

(
m

i

)

≤
d∑

i=0

(
m

i

)(m
d

)d−i

︸ ︷︷ ︸
>1

≤
m∑
i=0

(
m

i

)(m
d

)d−i

=
(m
d

)d m∑
i=0

(
m

i

)(
d

m

)i

Using binomial distribution

=
(m
d

)d (
1 +

d

m

)m

Using inequality (1− x) ≤ e−x

≤
(m
d

)d (
ed/m

)m

=
(m
d

)d
ed =

(
me

d

)d
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Generalization bound based on VC-dimension

Theorem (Generalization bound based on VC-dimension )

Let H be a hypothesis class with VC(H) = d , then for every h ∈ H and every δ > 0, with probability

of at least 1− δ, we have (This bound can be extended to nonrealizable case.)

R(h) ≤ R̂(h) +

√
2d log em

d

m
+

√
log 1

δ

2m

Proof.

From growth function, we have R(h) ≤ R̂(h) +
√

2 ln ΠH (m)
m

+

√
ln 1

δ
2m

.

From Sauer-Shelah Lemma, we have

R(h) ≤ R̂(h) +

√
2 lnΠH(m)

m
+

√
ln 1

δ

2m

≤ R̂(h) +

√√√√√2 ln

(
me
d

)d

m
+

√
ln 1

δ

2m

≤ R̂(h) +

√
2d ln me

d

m
+

√
ln 1

δ

2m
.
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VC-dimension

1. We showed that with probability at least 1− δ, and for all h ∈ H, if h is consistent, then

R(h) = O

 ln ΠH(2m) + ln

(
1

δ

)
m

 (1)

2. We also show that for all m > d ≥ 1 and VC(H) = d , we have

ΠH(m) ≤
(em

d

)d
3. The above inequality says that

for m ≤ d , ΠH(m) = 2m. In this case, bound given in (1) is meaning less.

for m ≥ d , ΠH(m) = O(md ). In this case, we have

lnΠH(m) = O(d lnm)

Hence, this bound is proportional to d and
1

m
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VC-dimension

Theorem (Bound based on VC-dimension)

Let VC(H) = d , then for all consistent h ∈ H, with probability at least 1− δ, we have

R(h) =O

(
d logm + log 1

m

m

)

m =O

(
1

ϵ
log

1

δ
+

d

ϵ
log

1

ϵ

)

Example (One dimensional threshold function)

For one-dimensional threshold function, we showed VC(H) = 1 and m ≥ 1

ϵ
log

2

δ
. Using the above

Theorem we have

m = O

(
1

ϵ
log

1

δ
+

1

ϵ
log

1

ϵ

)
.

This shows that this bound is not bad.
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VC-dimension

Example (Axis aligned rectangle)

For axis aligned rectangle, we showed VC(H) = 4 and m ≥ 4

ϵ
log

4

δ
. Using the above Theorem we

have

m = O

(
1

ϵ
log

1

δ
+

4

ϵ
log

1

ϵ

)
.

The above two examples show that the sample complexity increases linearly with the number of

parameters of hypothesis.

Example (Hypothesis class of sgn (sin(θx)))

We can show that VC(H) = ∞ but it has only one parameter.
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Radamacher complexity



Introduction

1. We use the following problem setting

The training set S = {(x1, y1), . . . , (xm, ym)}.
The label set Y = {−1,+1}.
The hypothesis h : X 7→ {−1,+1}.
The empirical error R̂(h) =

1

m

∑m
i=1 I [h(xi ) ̸= yi ].

2. An alternative definition of empirical error is

R̂(h) =
1

m

m∑
i=1

I [h(xi ) ̸= yi ]

=
1

m

m∑
i=1


1 if (h(xi ), yi ) = (+1,−1) or (h(xi ), yi ) = (−1,+1)

0 if (h(xi ), yi ) = (+1,+1) or (h(xi ), yi ) = (−1,−1)

=
1

m

m∑
i=1

1− yih(xi )

2

=
1

2
− 1

2m

m∑
i=1

yih(xi )
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Introduction

1. The term 1
2m

∑m
i=1 yih(xi ) can be interpreted as correlation between the true and predicted labels.

2. To find a hypothesis that minimizes the empirical error, we find a hypothesis that maximizes the

correlation.

h = argmax
h∈H

1

m

m∑
i=1

yih(xi ).

3. If we replace the true label with Radamacher random variables

σi =


+1 With probability of 1

2

−1 With probability of 1
2

we obtain

h = argmax
h∈H

1

m

m∑
i=1

σih(xi ).

4. Instead of selecting the hypothesis in H that correlates best with the labels, this now selects the

hypothesis h ∈ H that correlates best with the random noise variables σi .
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Introduction

1. Hypothesis h is dependent on the random variables σi .

2. To measure how well H can correlate with random noise, we take the expectation of this

correlation over the random variables σi and find

E
σ

[
max
h∈H

1

m

m∑
i=1

σih(xi )

]

3. This intuitively measures the expressiveness of H.

4. We can bound this expression using two extreme cases

When |H| = 1, the above expectation becomes zero.

When |H| = 2m, the above expectation becomes one, because there always exists a hypothesis

matching any set of σi ’s.
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Empirical Rademacher complexity

1. Instead of working with hypotheses h : X 7→ {−1,+1}, let’s generalize our class of functions to

the set of all real-valued functions.

2. Replace H with F , which we define to be any family of functions f : Z 7→ R.

3. Given sample S = (z1, . . . , zm) with zi ∈ Z, if we apply our expression from above to F .

Definition (Empirical Rademacher complexity)

The empirical Rademacher complexity of a family of functions F with respect to a sample S is

defined as

R̂S(F) = E
σ

[
sup
f∈F

1

m

m∑
i=1

σi f (zi )

]

4. This expression measures how well, on average, the function class F correlates with random noise

over the sample S .
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Rademacher complexity

1. Often we want to measure the correlation of F with respect to a distribution D over X , rather

than with respect to a sample S over X .

2. To find this, we take the expectation of R̂S(F) over all samples of size m drawn according to D.

Definition (Rademacher complexity/Expected Rademacher complexity)

Let D denote the distribution according to which samples are drawn. For any integer m ≥ 1, the

Rademacher complexity of F is the expectation of the empirical Rademacher complexity over all

samples of size m drawn according to D:

Rm(h) = E
S∼Dm

[
R̂S(F)

]
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Generalization bounds based on Rademacher complexity

We first prove the following theorem as a general tools.

Theorem

Let F be a family of functions mapping from Z to [0, 1], and let sample S = (z1, . . . , zm) where

zi ∼ D for some distribution D over Z. Define ÊS [f ] =
1
m

∑m
i=1 f (zi ), then with probability of at

least 1− δ for all f ∈ F , we have

E [f ] ≤ Ê
S
[f ] + 2Rm(F) + O

√ ln 1
δ

m


E [f ] ≤ Ê

S
[f ] + 2R̂S(F) + O

√ ln 1
δ

m



We derive a bound for E [f ]− ÊS [f ] for all f ∈ F or equivalently, bound supf∈F

{
E [f ]− ÊS [f ]

}
.

Note that supf∈F

{
E [f ]− ÊS [f ]

}
is a random variable that depends on S .

So we want to bound random variable: ϕ(S) = supf∈F

{
E [f ]− ÊS [f ]

}
.
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Generalization bounds based on Rademacher complexity

Proof:

Step 1: We show, with prob. of at least 1− δ, inequality ϕ(S) ≤ ES [ϕ(S)] +

√
ln 2

δ
2m

holds.

Let S = (z1, z2, . . . , zi , . . . , zm) and S ′ = (z1, z2, . . . , z
′
i , . . . , zm) be two training sets

with only one different element.

Recall that McDiarmid’s inequality states that, if for all i , we have

|f (z1, z2, . . . , zi , . . . , zm)− f (z1, z2, . . . , z
′
i , . . . , zm)| ≤ ci

then the following inequality holds

P
[
|f (S)− f (S ′)| ≥ ϵ

]
≤ 2 exp

(
− 2ϵ2∑m

i=1 c
2
i

)
From definition of ϕ(S), we have

ϕ(S) = sup
f∈F

{
E [f ]− Ê

S
[f ]
}

= sup
f∈F

{
E [f ]− 1

m

m∑
i=1

f (zi )

}
.
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Generalization bounds based on Rademacher complexity

Proof (Cont.):

Step 1 (Cont.):

Since f (zi ) ∈ [0, 1] for all i , changing any one example zi to z ′i in the training set S

will change 1
m

∑m
i=1 f (zi ) by at most 1

m
.

Thus changing any example affects ϕ(S) by at most 1
m
, implying |ϕ(S)−ϕ(S ′)| ≤ 1

m
.

This fits McDiarmid’s inequality with ci =
1
m
, so we can apply this inequality and

arrive at the bound shown.

P
[
|ϕ(S)− E

S
[ϕ(S)]| ≥ ϵ

]
≤ 2 exp

(
− 2ϵ2∑m

i=1 c
2
i

)
= 2 exp

(
− 2ϵ2∑m

i=1

(
1
m

)2
)

= 2 exp
(
−2mϵ2

)
.

If we let ϵ =
√

log 2δ
2m

, we obtain

ϕ(S) ≤ E
S
[ϕ(S)] +

√
ln 2

δ

2m
.
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Generalization bounds based on Rademacher complexity

Proof (Cont.):

Step 2: Let S ′ = (z ′1, . . . , z
′
m), z

′
i ∼ D, we show ES [ϕ(S)] ≤ ES,S′

[
supf∈F

(
ÊS′ [f ]− ÊS [f ]

)]
.

E
S
[ϕ(S)] =E

S

[
sup
f∈F

(
E [f ]− Ê

S
[f ]
)]

=E
S

[
sup
f∈F

E
S′

[
Ê
S′
[f ]− Ê

S
[f ]

]]
From definition of Radamacher complexity.

≤ E
S,S′

[
sup
f∈F

(
Ê
S′
[f ]− Ê

S
[f ]

)]
Moving S ′ outside of sup.

The last be done since the expectation of a max over some function is at least the

max of that expectation over that function.

Step 3: We show ES,S′

[
supf∈F

(
ÊS′ [f ]− ÊS [f ]

)]
= ES,S′,σ

[
supf∈F

∑
i σi

(
f (z ′i )− f (zi )

)]
,

where z ′i ∼ D.

E
S,S′

[
sup
f∈F

(
Ê
S′
[f ]− Ê

S
[f ]

)]
= E

S,S′

[
sup
f∈F

1

m

(∑
i

f (z ′i )−
∑
i

f (zi )

)]

= E
S,S′

[
sup
f∈F

1

m

∑
i

(
f (z ′i )− f (zi )

)]
.
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Generalization bounds based on Rademacher complexity

Proof (Cont.):

Step 3 (cont.): By adding Radamacher random variables, we obtain

E
S,S′

[
sup
f∈F

(
Ê
S′
[f ]− Ê

S
[f ]

)]
= E

S,S′,σ

[
sup
f∈F

1

m

∑
i

σi

(
f (z ′i )− f (zi )

)]

Step 4: We now show ES,S′,σ
[
supf∈F

∑
i σi

(
f (z ′i )− f (zi )

)]
≤ 2Rm(F).

E
S,S′,σ

 sup
f∈F

1

m

∑
i

σi

(
f (z′i ) − f (zi )

) ≤ E
S,S′,σ

 sup
f∈F

1

m

∑
i

σi f (z
′
i ) + sup

f∈F

1

m

∑
i

(−σi )f (zi )


This inequality was obtained from inequality sup(a+ b) ≤ sup(a) + sup(b).

E
S,S′,σ

 sup
f∈F

1

m

∑
i

σi

(
f (z′i ) − f (zi )

) ≤ E
S′,σ

 sup
f∈F

1

m

∑
i

σi f (z
′
i )

 + E
S,σ

 sup
f∈F

1

m

∑
i

(−σi )f (zi )


= Rm(F) + Rm(F).

The last inequality was obtained because −σi has the same distribution as σi .

Conclusion: By combining all the pieces together, the theorem will be proved.

The second inequality can be proved in the same way.
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Generalization bounds based on Rademacher complexity

The following result relates the empirical Rademacher complexities of a hypothesis set H and to the

family of loss functions F associated to H in the case of binary loss (zero-one loss).

Theorem

Let H be a family of functions taking values in {−1,+1} and let F be the family of loss functions

associated to H for the zero-one loss: fh(x , y) = I [h(x) ̸= y ]. For any sample

S = ((x1, y1), . . . , (xm, ym)) of elements in X × {−1,+1}, let SX denote its projection over X , i.e.

SX = (x1, . . . , xm).Then,the following relation holds between the empirical Rademacher complexities

of F and H:

R̂S(FH) =
1
2
R̂SX (H)
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Generalization bounds based on Rademacher complexity

Proof.

For any sample S = ((x1, y1), . . . , (xm, ym)) of elements in X × {−1,+1}, by definition, the empirical

Rademacher complexity of FH can be written as:

R̂S (FH) = E
σ

[
sup

fh∈FH

1

m

m∑
i=1

σi fh(xi , yi )

]

= E
σ

[
sup
h∈H

1

m

m∑
i=1

σi

(
1− yih(xi )

2

)]

= E
σ

[
sup
h∈H

1

2m

m∑
i=1

σi + sup
h∈H

1

2m

m∑
i=1

(−yiσi )h(xi )

]

=
1

2m

m∑
i=1

E
σ
[σi ] +

1

2
E
σ

[
sup
h∈H

1

m

m∑
i=1

σih(xi )

]

=
1

2
E
σ

[
sup
h∈H

1

m

m∑
i=1

σih(xi )

]

=
1

2
R̂SX (H).
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Relating different bounds



Relation of Rademacher complexity and the size of hypothesis space

The following Theorem relates Rademacher complexity and the size of hypothesis space.

Theorem

For any hypothesis space |H| < ∞, the following inequality holds.

R̂S(H) ≤
√

2 ln|H|
m

Lemma (Massart’s Lemma)

Let A ⊆ Rm be a finite set of vectors with ∥a∥ ≤ 1 for all a ∈ A. Then

E
σ

[
max
a∈A

m∑
i=1

σiai

]
≤
√

2 ln|A|,

where σi are independent Rademacher variables and a1, a2, . . . , am are components of vector a.
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Relation of Rademacher complexity and the size of hypothesis space

Proof.

1. Let us to define the space A as A =
{

1√
m
(h(x1), h(x2), . . . , h(xm))

}
.

2. Then A ⊆ Rm and for all a ∈ A we have ∥a∥ = 1.

3. From Rademacher complexity, we have

R̂S (H) = E
σ

[
sup
h∈H

1

m

m∑
i=1

σih(xi )

]

= E
σ

[
sup
a∈A

√
m

m

m∑
i=1

σiai

]

=
1√
m

E
σ

[
max
a∈A

m∑
i=1

σiai

]

≤ 1√
m

√
2 ln|A|

=

√
2 ln|A|
m

.

4. Since A is the set of classifiers for the set S , hence A ⊂ H and |A| ≤ |H|.
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Relation of Rademacher complexity and the Growth function

The following Theorem relates Rademacher complexity and the Growth function.

Theorem

For any hypothesis space H, the following inequality holds.

R̂S(H) ≤
√

ln ΠH(m)

m
.
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Relation of Rademacher complexity and the Growth function

Proof.

1. We only need to consider behavior of hypotheses on training set S .

2. Let H ′ = { one representative from H for each behaviors on S}.

3. Thus H ′ ⊂ H and |H ′| = ΠH′(S) ≤ ΠH(m) ≤ 2m < ∞.

4. From definition of Rademacher complexity, we have

R̂S(H) = E
σ

[
sup
h∈H

1

m

m∑
i=1

σih(xi )

]

5. Since, for every h ∈ H that maximizes R̂S(H), there exists an h′ ∈ H ′ that results in the same

value. Hence, we have

R̂S(H) = E
σ

[
sup
h′∈H′

1

m

m∑
i=1

σih
′(xi )

]
= R̂S(H

′).

6. This implies that the sup over H is no greater than the sup over H ′ and vice versa. Hence these

two sup are equal and

R̂S(H) = R̂S(H
′)

≤
√

2 ln|H ′|
m

=

√
2 lnΠH(S)

m
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Relation of Rademacher complexity and VC dimension

The following Theorem relates Rademacher complexity and VC dimension .

Theorem

Let d = VC(H), then for m ≥ d ≥ 1, we have R̂S (H) ≤
√

2d ln( em
d )

m

Proof.

From Sauer Lemma, we have ΠH(m) ≤
(
em
d

)d
and using the previous Theorem, we have

R̂S (H) ≤
√

2 lnΠH(m)

m

≤

√
2 ln

(
em
d

)d
m

=

√
2d ln

(
em
d

)
m

=

√
2 ln

(
em
d

)(
m
d

) .
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Fundamental Theorem of Statistical Learning



Fundamental Theorem of Statistical Learning

Theorem (Fundamental Theorem of Statistical Learning)

Let H be hypothesis class from a domain X to {0, 1} and the loss function be the 0/1 loss. Then,

the following are equivalent:

1. H has uniform convergence property.

2. Any ERM rule is a successful agnostic PAC learner for H.

3. H is agnostic PAC learnable.

4. H is PAC learnable.

5. Any ERM rule is a successful PAC learner for H.

6. H has finite VC dimension.

For the proof, please read section 6.4 of Ben-David book.
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Reading



Readings

1. Chapter 6 of Understanding machine learning : From theory to algorithms (Shalev-Shwartz and

Ben-David 2014).

2. Chapter 3 of Foundations of machine learning (Mohri, Rostamizadeh, and Talwalkar 2018).
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Questions?
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