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Introduction



Introduction

The complexity of any classifier depends on the number of input variables or features. These

complexities include

1. Time complexity: In most learning algorithms, the time complexity depends on the

number of input dimensions(D) as well as on the size of training set (N). Decreasing D

decreases the time complexity of algorithm for both training and testing phases.

2. Space complexity: Decreasing D also decreases the memory amount needed for training

and testing phases.

3. Samples complexity: Usually the number of training examples (N) is a function of length

of feature vectors (D). Hence, decreasing the number of features also decreases the

number of training examples.

Usually the number of training pattern must be 10 to 20 times of the number of features.

2 / 31



Introduction

1. In text classification, we usually represent documents in a high-dimensional space, with

each dimension corresponding to a term.

2. In this lecture: axis = dimension = word = term = feature

3. Many dimensions correspond to rare words.

4. Rare words can mislead the classifier.

5. Rare misleading features are called noise features.

6. Eliminating noise features from the representation increases efficiency and effectiveness of

text classification.

7. Eliminating features is called feature selection.
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Introduction(example)

1. Let’s say we’re doing text classification for the class China.

2. Suppose a rare term, say arachnocentric, has no information about China.

3. But all instances of arachnocentric happen to occur in China documents in our

training set.

4. Then we may learn a classifier that incorrectly interprets arachnocentric as evidence

for the class China.

5. Such an incorrect generalization from an accidental property of the training set is called

over-fitting.

6. Feature selection reduces over-fitting and improves the accuracy of the classifier.
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Introduction

There are several reasons why we are interested in reducing dimensionality as a separate

preprocessing step.

1. Decreasing the time complexity of classifiers or regressors.

2. Decreasing the cost of extracting/producing unnecessary features.

3. Simpler models are more robust on small data sets. Simpler models have less variance and

thus are less depending on noise and outliers.

4. Description of classifier is simpler / shorter.

5. Visualization of data is simpler.
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Peaking phenomenon

1. In practice, for a finite N, by increasing the number of features we obtain an initial

improvement in performance, but after a critical value further increase of the number of

features results in an increase of the probability of error.

2. This phenomenon is also known as the peaking phenomenon.

3. If the number of samples increases (N2 � N1), the peaking phenomenon occurs for larger

number of features (l2 > l1).
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Dimensionality reduction methods

1. There are two main methods for reducing the dimensionality of inputs

Feature selection: These methods select d (d < D) dimensions out of D dimensions and

D − d other dimensions are discarded.

Feature extraction: Find a new set of d (d < D) dimensions that are combinations of the

original dimensions.
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Feature selection methods



Feature selection methods

1. Feature selection methods can be categorized into three categories.

Filter methods: These methods use the statistical properties of features to filter out poorly

informative features.

Wrapper methods: These methods evaluate the feature subset within classifier/regressor

algorithms. These methods are classifier/regressors dependent and have better performance

than filter methods.

Embedded methods:These methods use the search for the optimal subset into

classifier/regression design. These methods are classifier/regressors dependent.

2. Two key steps in feature selection process.

Evaluation: An evaluation measure is a means of assessing a candidate feature subset.

Subset generation: A subset generation method is a means of generating a subset for

evaluation.
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Basic feature selection algorithm (filter methods)

1. The filter methods has the following structure

Basic feature selection algorithm

SelectFeatures(D, c , k)
1 V ← ExtractVocabulary(D)
2 L← []
3 for each t ∈ V
4 do A(t, c)← ComputeFeatureUtility(D, t, c)
5 Append(L, ⟨A(t, c), t⟩)
6 return FeaturesWithLargestValues(L, k)
How do we compute A, the feature utility?
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2. How do we compute A, the feature utility?
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Different filter methods

1. A feature selection method is mainly defined by the feature utility measure it employs

2. Feature utility measures:

Frequency – select the most frequent terms

Mutual information – select the terms with the highest mutual information

Mutual information is also called information gain in this context.

Chi-square (see book)
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Mutual information

1. In probability theory and information theory, the mutual information (MI) of two random

variables is a measure of the mutual dependence between the two variables.

2. MI determines how similar the joint distribution p(x , y) is to the products of factored

marginal distribution p(x) and p(y).

3. Formally, the mutual information of two discrete random variables x and y can be defined

as

MI (x , y) =
∑
x∈X

∑
y∈Y

p(x , y) log

(
p(x , y)

p(x)p(y)

)
4. In the case of continuous random variables, the summation is replaced by a definite double

integral

MI (x , y) =

∫
X

∫
Y
p(x , y) log

(
p(x , y)

p(x)p(y)

)
dxdy
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Mutual information

1. Compute the feature utility A(t, c) as the mutual information (MI) of term t and class c .

2. MI tells us “how much information” the term contains about the class and vice versa.

3. For example, if a term’s occurrence is independent of the class (same proportion of docs

within/without class contain the term), then MI is 0.

4. Definition:

I (U;C)=
∑

et∈{1,0}

∑
ec∈{1,0}

P(U =et ,C =ec) log2

P(U =et ,C =ec)

P(U =et)P(C =ec)
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How to compute MI values

1. Based on maximum likelihood estimates, formula we actually use is

I (U;C ) =
N11

N
log2

NN11

N1.N.1
+

N01

N
log2

NN01

N0.N.1

+
N10

N
log2

NN10

N1.N.0
+

N00

N
log2

NN00

N0.N.0

2. N10: number of documents that contain t (et = 1) and are not in c (ec = 0);

3. N11: number of documents that contain t (et = 1) and are in c (ec = 1);

4. N01: number of documents that do not contain t (et = 1) and are in c (ec = 1);

5. N00: number of documents that do not contain t (et = 1) and are not in c (ec = 1);

6. N1. = N10 + N11.

7. N = N00 + N01 + N10 + N11.
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How to compute MI values

1. Alternative way of computing MI:

I (U;C)=
∑

et∈{1,0}

∑
ec∈{1,0}

P(U =et ,C =ec) log2

N(U =et ,C =ec)

E(U =et)E(C =ec)

2. N(U =et ,C =ec) is the count of documents with values et and ec .

3. E (U =et ,C =ec) is the expected count of documents with values et and ec if we assume

that the two random variables are independent.
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MI example for poultry/export in Reuters

ec = epoultry = 1 ec = epoultry = 0

et = eexport = 1 N11 = 49 N10 = 27,652

et = eexport = 0 N01 = 141 N00 = 774,106

Plug these values into formula:

I (U;C ) =
49

801,948
log2

801,948 · 49

(49+27,652)(49+141)

+
141

801,948
log2

801,948 · 141

(141+774,106)(49+141)

+
27,652

801,948
log2

801,948 · 27,652

(49+27,652)(27,652+774,106)

+
774,106

801,948
log2

801,948 · 774,106

(141+774,106)(27,652+774,106)

≈ 0.000105
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MI feature selection on Reuters

Class: coffee

term MI

coffee 0.0111

bags 0.0042

growers 0.0025

kg 0.0019

colombia 0.0018

brazil 0.0016

export 0.0014

exporters 0.0013

exports 0.0013

crop 0.0012

Class: sports

term MI

soccer 0.0681

cup 0.0515

match 0.0441

matches 0.0408

played 0.0388

league 0.0386

beat 0.0301

game 0.0299

games 0.0284

team 0.0264
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Effect of feature selection (Naive Bayes)Naive Bayes: Effect of feature selection
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Feature extraction



Introduction

1. Let S consist of N points over D feature, i.e. it is an N × D matrix

S =


x11 x12 . . . x1D
x21 x22 . . . x2D

...
...

. . .
...

xN1 xN2 . . . xND

 .

2. Point xi = (xi1, xi2, . . . , xiD)> is a D-dimensional vector spanned by the D basis vectors

e1, e2, . . . , eD , ei corresponds to i th feature.

3. The standard basis is an orthonormal basis: the basis vectors are pairwise orthogonal

e>i ej = 0, and have unit length ‖ei‖ = 1.

4. Given any other set of D orthonormal vectors u1, u2, . . . , uD ,with u>i uj = 0 and ‖ui‖ = 1

(or u>i ui = 1), we can re-express each point x as the linear combination

x = a1u1 + a2u2 + . . .+ aDuD .
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Feature extraction

Principal component analysis



Principal component analysis (Best 1-dimensional approximation)

1. PCA projects D−dimensional input vectors to k−dimensional input vectors via a linear

mapping with minimum loss of information.

2. Dimensions are combinations of the original D dimensions.

3. The problem is to find a matrix W such that the following mapping results in the

minimum loss of information.

Z = W>X

4. PCA is unsupervised and tries to maximize the variance.

5. The principle component is w1 such that the sample after projection onto w1 is most

spread out so that the difference between the sample points becomes most apparent.

6. For uniqueness of the solution, we require ‖w1‖ = 1,

7. Let Σ = Cov(X ) and consider the principle component w1, we have

z1 = w>1 x

Var(z1) = E [(w>1 x − w>1 µ)2] = E [(w>1 x − w>1 µ)(w>1 x − w>1 µ)>]

= E [w>1 (x − µ)(x − µ)>w1] = w>1 E [(x − µ)(x − µ)>]w1 = w>1 Σw1
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Principal component analysis (Best 1-dimensional approximation)

1. The mapping problem becomes

w1 = argmax
w

w>Σw subject to w>1 w1 = 1.

2. Writing this as Lagrange problem, we have

maximize
w1

w>1 Σw1 − α(w>1 w1 − 1)

3. Taking derivative with respect to w1 and setting it equal to 0, we obtain

2Σw1 = 2αw1 ⇒ Σw1 = αw1

4. Hence w1 is eigenvector of Σ and α is the corresponding eigenvalue.

5. Since we want to maximize Var(z1), we have

Var(z1) = w>1 Σw1 = αw>1 w1 = α

6. Hence, we choose the eigenvector with the largest eigenvalue, i.e. λ1 = α.
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Principal component analysis (Minimum squared error approach)

1. Let εi = xi − x ′i denote the error vector. The MSE equals to

MSE (W ) =
1

N

N∑
i=1

‖εi‖2

=
N∑
i=1

‖xi‖2
N
−W>ΣW

= Var(S)−W>ΣW .

2. Since var(S), is a constant for a given dataset S , the vector W that minimizes MSE (W )

is thus the same one that maximizes the second term,

MSE (W ) = Var(S)−W>ΣW

= Var(S)− λ1

3. Example: Let

Σ =

 0.681 −0.039 1.265

−0.039 0.187 −0.320

1.265 −0.320 3.092


The largest eigenvalue of Σ equals to λ = 3.662 and the corresponding eigenvector equals

to w1 = (−0.390, 0.089,−0.916)>
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Principal component analysis (Minimum squared error approach)

1. The variance of S equals var(S) = 0.681 + 0.187 + 3.092 = 3.96.

2. MSE equals to

MSE (W1) = var(S)− λ1
= 3.96− 3.662 = 0.298

3. Principle component
7.2 Principal Component Analysis 191

X1

X2

X3

u1

Figure 7.2. Best one-dimensional or line approximation.

We can also directly obtain the total variance as the trace of the covariance matrix:

var(D) = tr(!) = σ 2
1 +σ 2

2 +σ 2
3 = 0.681 + 0.187 + 3.092= 3.96

Thus, using Eq. (7.16), the minimum value of the mean squared error is given as

MSE(u1) = var(D)−λ1 = 3.96− 3.662= 0.298

7.2.2 Best 2-dimensional Approximation

We are now interested in the best two-dimensional approximation to D. As before,
assume that D has already been centered, so that µ = 0. We already computed the
direction with the most variance, namely u1, which is the eigenvector corresponding to
the largest eigenvalue λ1 of !. We now want to find another direction v, which also
maximizes the projected variance, but is orthogonal to u1. According to Eq. (7.9) the
projected variance along v is given as

σ 2
v = vT!v

We further require that v be a unit vector orthogonal to u1, that is,

vTu1 = 0

vTv = 1
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Principal component analysis (Best 2-dimensional approximation)

1. The second principal component, w2, should also

maximize variance

be unit length

orthogonal to w1 (z1 and z2 must be uncorrelated)

2. The mapping problem for the second principal component becomes

w2 = argmax
w

w>Σw subject to w>2 w2 = 1 and w>2 w1 = 0.

3. Writing this as Lagrange problem, we have

maximize
w2

w>2 Σw2 − α(w>2 w2 − 1)− β(w>2 w1 − 0)

4. Taking derivative with respect to w2 and setting it equal to 0, we obtain

2Σw2 − 2αw2 − βw1 = 0

5. Pre-multiply by w>1 , we obtain

2w>1 Σw2 − 2αw>1 w2 − βw>1 w1 = 0

6. Note that w>1 w2 = 0 and w>1 Σw2 = (w>2 Σw1)> = w>2 Σw1 is a scaler.
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Principal component analysis (Best 2-dimensional approximation)

1. Since Σw1 = λ1w1, therefore we have

w>1 Σw2 = w>2 Σw1 = λ1w
>
2 w1 = 0

2. Then β = 0 and the problem reduces to

Σw2 = αw2

3. This implies that w2 should be the eigenvector of Σ with the second largest eigenvalue

λ2 = α.

4. Let the projected dataset be denoted by A.

5. The total variance for A is given as

var(A) = λ1 + λ2
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Principal component analysis (Best k-dimensional approximation)

1. We are now interested in the best k-dimensional (k � D) approximation to S .

2. Assume that we have already computed the first j − 1 principal components or

eigenvectors, w1,w2, . . . ,wj−1, corresponding to the j − 1 largest eigenvalues of Σ

3. To compute the j th new basis vector wj , we have to ensure that it is normalized to unit

length, that is, w>j wj = 1, and is orthogonal to all previous components wi (for i ∈ [1, j)).

4. The projected variance along wj is given as w>j Σwj

5. Combined with the constraints on wj , this leads to the following maximization problem

with Lagrange multipliers:

maximize
wj

w>j Σwj − α(w>j wj − 1)−
j−1∑
i=1

βi (w
>
i wj − 0)

6. Solving this, results in βi = 0 for all i < j .

7. To maximize the variance along wj , we use the j th largest eigenvalue of Σ.
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Principal component analysis (Best k-dimensional approximation)

1. In summary, to find the best k-dimensional approximation to Σ, we compute the

eigenvalues of Σ.

2. Because Σ is positive semidefinite, its eigenvalues must all be non-negative, and we can

thus sort them in decreasing order

λ1 ≥ λ2 ≥ . . . λj−1 ≥ λj ≥ . . . ≥ λD ≥ 0

3. We then select the k largest eigenvalues, and their corresponding eigenvectors to form the

best k-dimensional approximation.

4. Since Σ is symmetric, for two different eigenvalues, their corresponding eigenvectors are

orthogonal. (Show it)

5. If Σ is positive definite (x>Σx > 0 for all non-null vector x), then all its eigenvalues are

positive.

6. If Σ is singular, its rank is k (k < D) and λi = 0 for i = k + 1, . . . ,D.

26 / 31



Principal component analysis (effect of centering data)

1. Define

Z = W>(X −m)

2. Then k columns of W are the k leading eigenvectors of S (the estimator of Σ).

3. m is the sample mean of X .

4. Subtracting m from X before projection centers the data on the origin.
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Principal component analysis (selecting k)

1. How to select k?

2. Since all eigenvalues are positive and |S | =
∏D

i=1 λi is small, then some eigenvalues have

little contribution to the variance and may be discarded.

3. Scree graph is the plot of variance as a function of the number of eigenvectors.
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Principal component analysis (selecting k)

1. How to select k?

2. We select the leading k components that explain more than for example 95% of the

variance.

3. The proportion of variance (POV) is

POV =

∑k
i=1 λi∑D
i=1 λi

4. By visually analyzing it, we can choose k .
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