Modern Information Retrieval

Index compression¹

Hamid Beigy

Sharif university of technology

October 13, 2023

¹Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

- $1. \ \ {\rm Characterization \ of \ an \ index}$
- 2. Dictionary compression
- 3. Compressing the dictionary
- 4. Compressing the posting lists
- 5. Conclusion
- 6. References

Introduction

- $1. \ \mbox{Dictionary and inverted index: core of IR systems}$
- 2. Techniques can be used to compress these data structures, with two objectives:
 - reducing the disk space needed
 - reducing the time processing, by using a cache (keeping the postings of the most frequently used terms into main memory)
- 3. Decompression can be faster than reading from disk

- 1. Characterization of an index
- 2. Dictionary compression
- 3. Compressing the dictionary
- 4. Compressing the posting lists
- 5. Conclusion
- 6. References

Characterization of an index

Considering the Reuters-RCV1 collection

size of	dictionary		non-positional index			positional index					
	size	Δ	cum.		size	Δ	cum.		size	Δ	cum.
unfiltered	484,494				109,971,179				197,879,290		
no numbers	473,723	-2%	-2%		100,680,242	-8%	-8%		179,158,204	-9%	-9%
case folding	391,523	-17%	-19%		96,969,056	-3%	-12%		179,158,204	-0%	-9%
30 stop words	391,493	-0%	-19%		83,390,443	-14%	-24%		121,857,825	-31%	-38%
150 stop words	391,373	-0%	-19%		67,001,847	-30%	-39%		94,516,599	-47%	-52%
stemming	322,383	-17%	-33%		63,812,300	-4%	-42%		94,516,599	-0%	-52%

Statistical properties of terms

1. The vocabulary grows with the corpus size

 $M = kT^b$

where T is the number of tokens, and k and b are two parameters defined as follows:

 $b \approx 0.5$ $30 \le k \le 100$

(*k* is the growth-rate)

3. On the REUTERS corpus for the first 1,000,020 tokens (taking k = 44 and b = 0.49):

 $M = 44 \times 1,000,020^{0.5} = 38,323$

- 1. Now we have characterized the growth of the vocabulary in collections.
- 2. We want understand how terms are distributed across documents.
- 3. We want know how many frequent vs. infrequent terms we should expect in a collection.
- 4. In natural language, there are a few very frequent terms and very many very rare terms.

 $\mathrm{cf}_i \propto \frac{1}{i}$

5. **Zipf's law:** The *i*th most frequent term has frequency cf_i proportional to $\frac{1}{i}$.

6. cf_i is collection frequency: the number of occurrences of the term t_i in the collection.

7. So if the most frequent term (*the*) occurs cf_1 times, then

$$cf_{2} = \frac{1}{2}cf_{1}$$

$$cf_{3} = \frac{1}{3}cf_{1}$$

$$\vdots$$

$$cf_{k} = \frac{1}{k}cf_{1}$$

8. Equivalently, we can write Zipf's law as

$$\mathrm{cf}_i = ci^k$$

 $\log \mathrm{cf}_i = \log c + k \log i \quad \text{for} \quad k = -1$

Dictionary compression

Dictionary compression

- 1. The dictionary is small compared to the postings file.
- 2. But we want to keep it in memory.
- 3. We compress the dictionary because of
 - Reduce the response time of an IR system
 - We want design the search system for systems with limited hardware such as cell phones, onboard computers.
 - Fast startup time
 - Sharing resurces with other applications.
- 4. So compressing the dictionary is important.

term	document frequency	pointer to postings list	postings list
а	656,265	\longrightarrow	
aachen	65	\longrightarrow	
zulu	221	\rightarrow	
40	4	4	space needed

1. Total space for using Unicode and fixed-width entries (term-length=20):

 $M \times (2 \times 20 + 4 + 4) = 400,000 \times 48 = 19.2$ MB

2. Without using Unicode:

 $M \times (20 + 4 + 4) = 400,000 \times 28 = 11.2 \text{ MB}$

3. Remarks

- The average length of a word type for REUTERS is 7.5 bytes
- With fixed-length entries, a one-letter term is stored using 20 bytes!
- Some very long words (such as hydrochlorofluorocarbons) cannot be handled.
- How can we extend the dictionary representation to save bytes and allow for long words?

Compressing the dictionary

- 1. 3 bytes per pointer into string (need $\log_2 400000 \approx 22$ bits to resolve 400,000 positions)
- 2. 8 chars (on average) for term in string
- 3. Using Unicode: $400,000 \times (4 + 4 + 3 + 2 \times 8) = 10.8$ MB (compared to 19.2 MB for fixed-width)
- 4. Without using Unicode: $400,000 \times (4 + 4 + 3 + 8) = 7.6$ MB (compared to 11.2 MB for fixed-width)

- 1. Let us consider blocks of size k
- 2. We remove k 1 pointers, but add k bytes for term length
- 3. Example:

k = 4, $(k-1) \times 3$ bytes saved (pointers), and 4 bytes added (term length) \rightarrow 5 bytes saved

4. Space saved:

 $400,000 \times (\frac{1}{4}) \times 5 = 0.5$ MB (dictionary reduced to 10.3 MB and for non-Unicode 7.1MB)

5. Why not taking k > 4 ?

1. Uncompressed dictionary

Average search cost: $(0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 \approx 1.6$ steps

2. Compressed dictionary with blocking

Average search cost: $(0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 \approx 2$ steps

Front coding

- 1. Many words have the same prefix. We can write common prefix once.
- 2. One block in blocked compression (k = 4)

8automata8automate9automatic10automation

3. Compressed with front coding.

8automat*a1>e2>ic3>ion

- 4. End of prefix marked by \ast
- 5. Deletion of prefix marked by \diamond

representation	size (unicode)	size (non-unicode)
dictionary, fixed-width	19.2MB	11.2MB
dictionary as a string	10.8MB	7.6MB
\sim , with blocking, $k=$ 4	10.3MB	7.1MB
\sim , with blocking & front coding	7.9MB	5.9MB

Compressing the posting lists

- 1. The REUTERS collection has
 - about 800 000 documents,
 - each having 200 tokens
- 2. Since tokens are encoded using 6 bytes, the collection's size is 960 MB
- 3. A document identifier must cover all the collection, *i.e.* must be $log_2800,000 \approx 20$ bits
- 4. If the collection includes about 100,000,000 postings, the size of the posting lists is 100,000,000 \times 20/8 = 250 MB
- 5. How to compress these postings ?
- 6. Idea: most frequent terms occur close to each other.
- 7. We encode the gaps between occurrences of a given term

	encoding	postings	list								
the	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
computer	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
arachnocentric	docIDs	252000		500100							
	gaps	252000	248100								

Furthermore, small gaps are represented with shorter codes than big gaps.

Two techniques

- Variable-length byte-codes (Byte-level)
- γ -codes (Bit-level)

Compressing the posting lists

Using variable-length byte-codes

- 1. Variable-length byte encoding uses an integral number of bytes to encode a gap
- 2. First bit := continuation byte
- 3. Last 7 bits := part of the gap
- 4. The first bit is set to 1 for the last byte of the encoded gap, 0 otherwise
- 5. Example: a gap of size 5 is encoded as 10000101

doclDs 824 829 215406 gaps 5 214577 VB code 0000110 1011000 1000010 00001101 00001100 10110001 What is the code for a gap of size 1283?	Example			
gaps 5 214577 VB code 00000110 10111000 10000101 00001101 00001100 10110001 What is the code for a gap of size 1283? 214577	docIDs	824	829	215406
VB code 00000110 10111000 10000101 00001101 00001100 10110001 What is the code for a gap of size 1283?	gaps		5	214577
What is the code for a gap of size 1283?	VB code	00000110 10111000	10000101	00001101 00001100 10110001
	What is the	code for a gap of siz	ze 1283?	

- 6. The posting lists for the REUTERS collection are compressed to 116 MB with this technique (original size: 250 MB)
- 7. The idea of representing gaps with variable integral number of bytes can be applied with units that differ from 8 bits
- 8. Larger units can be processed (decompression) quicker than small ones, but are less effective in terms of compression rate

Compressing the posting lists

Using γ -codes

Using γ -codes

- 1. Idea: representing numbers with a variable bit code
- 2. Unary code: the number *n* is encoded as: 11...0(not efficient)
- 3. γ -code: variable encoding done by splitting the representation of a gap as follows:

length offset

- *offset* is the binary encoding of the gap (without the leading 1)
- *length* is the unary code of the offset size

Unary and γ -codes

number	unary code	length	offset	$\gamma \operatorname{code}$
0	0			
1	10	0		0
2	110	10	0	10,0
3	1110	10	1	10,1
4	11110	110	00	110,00
9	1111111110	1110	001	1110,001
13		1110	101	1110,101
24		11110	1000	11110,1000
511		111111110	11111111	111111110,11111111
1025		11111111110	000000001	11111111110,000000001

Example

1. Given the following $\gamma\text{-coded gaps:}$

1110001110101011111101101111011

- 2. Decode these, extract the gaps, and recompute the posting list
- 3. $\gamma\text{-decoding}$:
 - first reads the length (terminated by 0),
 - then uses this length to extract the offset,
 - ${\scriptstyle \bullet}\,$ and eventually prepends the missing 1

1110001 - 11010 - 101 - 11111011011 - 11011

Compression of Reuters: Summary

representation	size in MB	size in MB
	Unicode	non-unicode
dictionary, fixed-width	19.2	11.2
dictionary, term pointers into string	10.8	7.6
\sim , with blocking, $k=4$	10.3	7.1
\sim , with blocking & front coding	7.9	5.3
collection (text, xml markup etc)	3600.0	3600.0
collection (text)	960.0	960.0
term incidence matrix	40,000.0	40,000.0
postings, uncompressed (32-bit words)	400.0	400.0
postings, uncompressed (20 bits)	250.0	250.0
postings, variable byte encoded	116.0	116.0
postings, γ encoded	101.0	101.0

Conclusion

Conclusion

- 1. γ -codes achieve better compression ratios (about 15 % better than variable bytes encoding), **but** are more complex (expensive) to decode
- 2. This cost applies on query processing \rightarrow trade-off to find
- 3. The objectives announced are met by both techniques, recall:
 - reducing the disk space needed
 - ${\ensuremath{\, \bullet }}$ reducing the time processing, by using a cache
- 4. The techniques we have seen are lossless compression (no information is lost)
- 5. *Lossy compression* can be useful, *e.g.* storing only the most relevant postings (more on this in the ranking lecture)

References

1. Chapters 5 of Information Retrieval Book²

²Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press.

Questions?