Modern Information Retrieval

Vector space model¹

Hamid Beigy

Sharif university of technology

October 15, 2023

¹Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

- 1. Introduction
- 2. Parametric and zone indexes
- 3. Term weighting
- 4. Vector space model
- 5. Variant tf-idf functions
- 6. Conclusion
- 7. References

Introduction

Introduction

- 1. Boolean model: all documents matching the query are retrieved
- 2. The matching is binary: yes or no
- 3. In extreme cases, the list of retrieved documents can be empty or huge
- 4. A ranking of the documents matching a query is needed
- 5. A score is computed for each pair of (query, document)

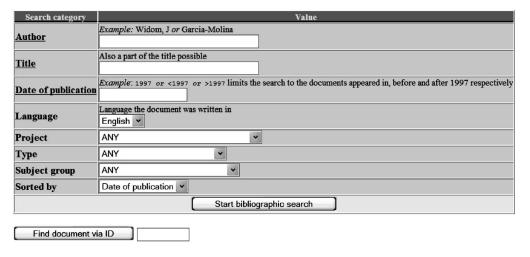
Parametric and zone indexes

Parametric index

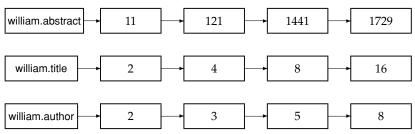
- 1. Digital documents generally encode, in machine-recognizable form, certain metadata, such author(s), title, and date of publication of a document.
- 2. These metadata would generally include fields, such as the creation data and the format of the document, author and the title of the document.
- 3. Consider query find documents authored by William Shakespeare in 1601, containing the phrase alas poor Yorick.
- 4. Query processing then consists as usual of postings intersections, except that we may merge postings from standard inverted as well as parametric indexes.
- 5. There is one parametric index for each field (say, date of creation); it allows us to select only the documents matching a date specified in the query.

1. Parametric search

Bibliographic Search



- 1. Zones are similar to fields, except the contents of a zone can be arbitrary free text.
- 2. A field may take on a relatively small set of values, a zone can be thought of as an arbitrary, unbounded amount of text.
- 3. We may build a separate inverted index for each zone of a document.
- 4. Consider query find documents with william in the title and william in the author list and the phrase gentle rain in the body



Zone index

- 1. The dictionary for a parametric index comes from a fixed vocabulary (the set of languages, or the set of dates), the dictionary for a zone index must structure whatever vocabulary stems from the text of that zone.
- 2. We can reduce the size of the dictionary by encoding the zone in which a term occurs in the postings.

3. How do you compute the score of a document for a given query?

Ranked Boolean Retrieval

- 1. Zones (or fields) can be weighted differently to compute each document's relevance.
- 2. Scoring is the basis for ranking or sorting document that are returned from a query.
- 3. Ideally the score is high when the document is relevant.
- 4. Let having three zones. Let g_k be weight of zone k.
- 5. Let g = (0.6, 0.3, 0.1) be the weights. Consider the weighted sum of weights as

$$Score(d) = 0.6(William \in Title) + 0.3(William \in Abstract) + 0.1(William \in Body)$$

- 6. Weights can be determined using
 - the experts,
 - learning from data {(q, d, relevance/nonrelevance)}

Term weighting

Term weighting

- 1. Evaluation of how important a term is with respect to a document
- 2. First idea: the more important a term is, the more often it appears: term frequency

$$tf_{t,d} = \sum_{x \in d} f_t(x)$$
 where $f_t(x) = \begin{cases} 1 & \text{if } x = t \\ 0 & \text{otherwise} \end{cases}$

- 3. The order of terms within a doc is ignored
- 4. Are all words equally important? What about stop-lists?

Term weighting (continued)

- 1. Terms occurring very often in the collection are not relevant for distinguishing among the documents
- 2. A relevance measure cannot only take term frequency into account
- 3. Idea: reducing the relevance (weight) of a term using a factor growing with the *collection* frequency (the total number of occurrences of a term in the collection).
- 4. Collection frequency versus document frequency?

Term t	cf _t	df _t
try	10422	8760
insurance	10440	3997

Inverse Document Frequency

1. Inverse document frequency of a term t:

$$idf_t = log \frac{N}{df_t}$$
 with $N =$ collection size

- 2. Rare terms have high idf, contrary to frequent terms
- 3. Example (Reuters collection):

df _t	idf_t
18165	1.65
6723	2.08
19241	1.62
25235	1.5
	18165 6723 19241

tf-idf weighting

1. The weight of a term is computed using both *tf* and *idf*:

$$w(t,d) = tf_{t,d} \times idf_t$$
 called $tf - idf_{t,d}$

- 2. w(t, d) is:
 - 2.1 high when t occurs many times in a small set of documents
 - 2.2 low when t occurs fewer times in a document, or when it occurs in many documents
 - 2.3 very low when t occurs in almost every document
- 3. Score of a document with respect to a query:

$$score(q, d) = \sum_{t \in q} w(t, d)$$

Vector space model

Vector space model

- 1. Each term t of the dictionary is considered as a dimension
- 2. A document *d* can be represented by the weight of each dictionary term:

$$V(d) = (w(t_1, d), w(t_2, d), ..., w(t_n, d))$$

- 3. Question: does this representation allow to compute the similarity between documents?
- 4. Similarity between vectors? inner product $V(\vec{d}_1).V(\vec{d}_2)$
- 5. What about the length of a vector?

Vector normalization and similarity

1. Euclidian normalization (vector length normalization):

$$\vec{v(d)} = \frac{\vec{V(d)}}{\|\vec{V(d)}\|}$$
 where $\|\vec{V(d)}\| = \sqrt{\sum_{i=1}^{n} x_i^2}$

2. Similarity given by the *cosine* measure between normalized vectors:

$$sim(d_1, d_2) = v(\vec{d}_1).v(\vec{d}_2)$$

3. Consider the following example

Dictionary	$v(\vec{d}_1)$	$v(\vec{d}_2)$	$v(\vec{d}_3)$
affection	0.996	0.993	0.847
jealous	0.087	0.120	0.466
gossip	0.017	0	0.254

$$sim(d_1, d_2) = 0.999$$

 $sim(d_1, d_3) = 0.888$

Matching queries against documents

- 1. Queries are represented using vectors in the same way as documents
- 2. In this context:

$$score(q, d) = \vec{v(q)} \cdot \vec{v(d)}$$

3. In the previous example, with q := jealous gossip, we obtain:

$$\vec{v(q)} \cdot \vec{v(d_1)} = 0.074$$

 $\vec{v(q)} \cdot \vec{v(d_2)} = 0.085$
 $\vec{v(q)} \cdot \vec{v(d_3)} = 0.509$

Retrieving documents

- 1. Basic idea: similarity cosines between the query vector and each document vector, finally selection of the top K scores
- 2. Provided we use the $tf idf_{t,d}$ measure as a weight, which information do we store in the index ?
 - 2.1 The size of the collection divided by the document frequency, $\frac{N}{df_t}$, (stored with the pointer to the postings list)
 - 2.2 The term frequency $tf_{t,d}$ (stored in each posting)
- 3. We can compute weights as we retrieve postings

```
COSINESCORE(q)

1  float Scores[N] = 0

2  float Length[N]

3  for each query term t

4  do calculate w_{t,q} and fetch postings list for t

5  for each pair(d, tf<sub>t,d</sub>) in postings list

6  do Scores[d] + = w_{t,d} \times w_{t,q}

7  Read the array Length

8  for each d

9  do Scores[d] = Scores[d]/Length[d]

10  return Top K components of Scores[]
```

Variant tf-idf functions

Sub-linear term frequency scaling

• Idea: balancing the number of occurrences of a term, using a logarithm

$$w_{t,d} = \left\{ egin{array}{ll} 1 + log(tf_{t,d}) & ext{if } tf_{t,d} \geq 0 \ 0 & ext{otherwise} \end{array}
ight.$$

• The relevance of a term is not directly proportional to its frequency

Maximum term frequency normalization

ullet Idea: normalizing $tf_{t,d}$ with the maximum term frequency of the document d

$$tf_{max}(d) = max_{\tau \in d}tf_{\tau,d}$$

$$ntf_{t,d} = a + (1-a) \frac{tf_{t,d}}{tf_{max}(d)}$$

- $0 \le a \le 1$ is a smoothing coefficient (generally set to 0.4)
- ullet a allows to avoid having big changes of $ntf_{t,d}$ while $tf_{t,d}$ slightly changes

SMART weightings

- Named after a widely used IR system whose development started at Cornell University (US)
- Library of weightings schemes fitting the Vector Space Model (cosine similarity)
- Based on the following weighting:

$$w(t,d) = \frac{tf'_{t,d} \times idf'_t}{norm'_d}$$

ullet where (i) $tf'_{t,d}$, (ii) idf'_t , and (iii) $norm'_d$ are parameter of the system

• Frequency weighting, discrimination and normalisation:

	$tf'_{t,d}$		idf'_t		$norm'_d$
Ь	{0,1}	n	1	n	1
n	$tf_{t,d}$	t	$idf_t = log(\frac{N}{df_t})$	С	$\frac{1}{\sqrt{w_1^2 + + w_n^2}}$
1	$1 + \log(tf_{t,d})$	р	$max(0, log(\frac{N-df_t}{df_t}))$	р	$\sqrt{w_1^2 + \dots + w_n^2}$ K(cf supra)
m	$ntf_{t,d}$				
а	$0.5 + rac{0.5 imes t f_{t,d}}{max_t(t f_{t,d})}$				

- The mnemonic *ddd.qqq* is used (term/document/normalization).
- \bullet $tf idf_{t,d} := ntc$
- \bullet doc and query can use different parameters

Conclusion

Conclusion

- 1. What we have seen today?
 - ullet Term weighting using $tf idf_{t,d}$
 - Vector space model (cosine similarity)
 - Optimizations for document ranking
- 2. Next lecture ?
 - Other weighting schemes

References

Reading

1. Chapters 6 of Information Retrieval Book²

²Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). **Introduction to Information Retrieval.** New York, NY, USA: Cambridge University Press.

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). **Introduction to Information Retrieval.** New York, NY, USA: Cambridge University Press.

Questions?