
Deep Generative Models

Generative Adversarial Networks

Hamid Beigy

Sharif University of Technology

April 20, 2024



Table of contents

1. Introduction

2. Generative Aversarial networks

3. Variants of GAN

4. GAN Inversion

5. References

1 / 84



Introduction



Generative models categories
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,

whose true distribution pdata(x) is unknown.

2. We attempt to approximate this process with a chosen model, pθ(x), with parameters θ

such that x ∼ pθ(x).

3. Learning is the process of searching for the parameter θ such that pθ(x) well approximates

pdata(x) for any observed x, i.e.

pθ(x) ≈ pdata(x)

4. We wish pθ(x) to be sufficiently flexible to be able to adapt to the data for obtaining

sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Generative Aversarial networks



Generative Adversarial Networks

1. Generative adversarial networks (GANs) are a new way to implicitly build generative

models p(x) (Goodfellow et al. 2014).

2. Generative adversarial networks

Generative: Learns a generative model.

Adversarial: Trained in an adversarial setting

Networks: Use Deep Neural Networks

3. Which one is computer generated?

(Goodfellow 2016)

Single Image Super-Resolution

(Ledig et al 2016)4. How do we generate a fake image?

5. Can we generate a fake image from a random number? 4 / 84



GAN results

1. Results obtained from GAN (Radford, Metz, and Chintala 2016).Results

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep 
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015. 
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GAN Architecture

1. GAN has the following architecture

2. z (input to generator) is some random noise (Gaussian/Uniform).

3. z can be thought as the latent representation of the image.
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Generator

1. The generator tries to learn p(x | z).

2. Inputs are directly sampled from q(z).

3. Problem: No true data x is provided when training the generator

4. Instead of a traditional loss function, gradient is provided by a discriminator (another

network)

8 / 84



Discriminator

1. The discriminator attempts to tell the difference between real and fake images.

2. It tries to learn p(y | x), where y is the label (real or generated) and x is the real or

generated data.

3. Trained using standard cross entropy loss to assign the correct label (although this has

changed in recent GANs).

4. Generator weights are frozen while training discriminator; inputs are generated data and

real data, targets are 0 and 1

5. From generator’s point-of-view, discriminator is a black-box loss function
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GAN Architecture

1. Let pg / pdata be probability of generating a fake / real sample.

2. Let output of discriminator, D(x), be the probability that x is a real sample.

3. For a fake sample G (z), the discriminator is expected to output a probability, D(G (z)),

close to zero by maximizing Ez∼ pz(z)
[log(1− D(G (z)))].

4. For a real data, the sample is expected to output a probability D(x), close to one by

maximizing Ex∼ pdata(x)
[logD(x)].

5. The generator is trained to increase the chances of D producing a high probability for a

fake example, thus to minimize Ez∼ pz(z)
[log(1− D(G (z)))].

6. When combining both aspects together, D and G are playing a minimax game in which

we should optimize the following loss function:

min
G

max
D

V (D,G ) = min
G

max
D

Ex∼ pdata(x)
[logD(x)] + Ez∼ pz(z)

[log(1− D(G (z)))]

= min
G

max
D

Ex∼ pdata(x)
[logD(x)] + Ez∼ px(g)

[log(1− D(x))]

7. Thus, Ex∼ pdata(x)
[logD(x)] has no impact on G during gradient descent updates.
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Min-Max Game

1. Loss function is

V (G ,D) =

∫

x

pdata(x) log(D(x))dx+

∫

z

pz(z) log(1− D(G (z)))dz

=

∫

x

(
pdata(x) log(D(x)) + pg (x) log(1− D(x))

)
dx

2. The full two-player game can be summarily described by the below.

min
G

max
D

V (D,G )
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Training GAN

1. It is important to understand that both the generator and discriminator are trying to learn

moving targets. Both networks are trained simultaneously.

2. The discriminator needs to update based on how well the generator is doing.

3. The generator is constantly updating to improve performance on the discriminator.

4. These two need to be balanced correctly to achieve stable learning instead of chaos.

12 / 84



Training GAN

Discriminator	
updates

Generator	
updates
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Training GAN

1. How GAN is trained?

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x)

. (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2
.

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . , x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
log D

⇣
x(i)

⌘
+ log

⇣
1 � D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for
• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g

1

m

mX

i=1

log
⇣
1 � D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

2. discriminative distribution D(x), real data pdata, generative distribution pg .

(a) An adversarial pair near convergence: pg is similar to pdata and D is a partially

accurate classifier.

(b) In inner loop of algorithm, D is trained to discriminate samples from data, converging

to D∗(x).

(c) After an update to G , gradient of D has guided G (z) to flow to regions that are more

likely to be classified as data.

(d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because pg = pdata. 14 / 84



GAN Results

1. Visualization of samples from the model.

2. Rightmost column shows the nearest training example of the neighboring sample.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)

Figure 3: Digits obtained by linearly interpolating between coordinates in z space of the full model.

1. A conditional generative model p(x | c) can be obtained by adding c as input to both G and D.
2. Learned approximate inference can be performed by training an auxiliary network to predict z

given x. This is similar to the inference net trained by the wake-sleep algorithm [15] but with
the advantage that the inference net may be trained for a fixed generator net after the generator
net has finished training.

3. One can approximately model all conditionals p(xS | x 6S) where S is a subset of the indices
of x by training a family of conditional models that share parameters. Essentially, one can use
adversarial nets to implement a stochastic extension of the deterministic MP-DBM [10].

4. Semi-supervised learning: features from the discriminator or inference net could improve perfor-
mance of classifiers when limited labeled data is available.

5. Efficiency improvements: training could be accelerated greatly by devising better methods for
coordinating G and D or determining better distributions to sample z from during training.

This paper has demonstrated the viability of the adversarial modeling framework, suggesting that
these research directions could prove useful.

7
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Optimality of GAN

Theorem (Optimality of GAN)

For G fixed, the optimal discriminator D is

D∗(x) =
pdata(x)

pdata(x) + pg (x)

Proof.

The training criterion for the discriminator D, given any generator G , is to maximize the

quantity V (G ,D).

V (G ,D) =

∫

x

pdata(x) logD(x)dx+

∫

z

pz(z) log(1− D(G (z)))dz

=

∫

x

pdata(x) logD(x) + pg (x) log(1− D(x))dx

For any (a, b) ∈ R2 (0, 0), function u 7→ a log u + b log(1− u) achieves its maximum in [0, 1]

at a
a+b .
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Convergence of training algorithm of GAN

Theorem (Convergence of training algorithm of GAN)

If G and D have enough capacity, and at each step of training Algorithm, the discriminator is

allowed to reach its optimum given G , and pg is updated so as to improve the criterion

V (D,G ), then, pg converges to pdata

What is the global optimal?

1. When both G and D are at their optimal values, we have pg = pdata and D∗(x) = 1
2 , and

the loss function becomes:

V (G ,D∗) =
∫

x

pdata(x) log(D
∗(x)) + pg (x) log(1− D∗(x))dx

= log
1

2

∫

x

pdata(x)dx+ log
1

2

∫

x

pg (x)dx

= −2 log 2

18 / 84



What does the loss function represent?

1. KL divergence measures how one probability distribution p diverges from a second

probability distribution q

DKL(p || q) =
∫

x

p(x) log
p(x)

q(x)
dx

2. KL divergence is asymmetric.

3. In cases where p(x) is close to zero, but q(x) is significantly non-zero, the q’s effect is

disregarded.

4. Jensen–Shannon Divergence is a measure of similarity between two probability

distributions, bounded by [0, 1].

DJS(p || q) = 1

2
DKL

(
p || p+q

2

)
+

1

2
DKL

(
q || p+q

2

)

5. JS divergence is symmetric and more smooth.
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What does the loss function represent?

1. JS divergence between pdata and pg can be computed as:

DJS

(
pdata || pg

)
=
1

2
DKL

(
pdata || pdata +pg

2

)
+

1

2
DKL

(
pg || pdata +pg

2

)

=
1

2

(
log 2 +

∫

x

pdata(x) log
pdata(x)

pdata(x) + pg (x)
dx

)

+
1

2

(
log 2 +

∫

x

pg (x) log
pg (x)

pdata(x) + pg (x)
dx

)

=
1

2
(log 4 + V (G ,D∗))

2. Thus

V (G ,D∗) = 2DJS

(
pdata || pg

)
− 2 log 2

3. The best G∗ that replicates the real data distribution leads to the minimum

V (G∗,D∗) = −2 log 2, which is aligned to the optimal solution.
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Generative Aversarial networks

Deep Convolutional GAN



Deep Convolutional Generative Adversarial Networks

1. DCGAN maps from random noise to an image matrix.

2. It uses convolutional Layers in the generator network to produce better results (Radford,

Metz, and Chintala 2016).

3. Combine CNN and GAN for unsupervised learning.

4. Learns a hierarchy of feature representations

5. The Generator uses fractional-strided convolutions followed by batch normalisation and

ReLU activation for all layers except for the last that uses tanh activation.

6. The Discriminator uses strided convolutions followed by batch normalisation and

LeakyReLU activation for all layers except for a single sigmoid output.

Deep Convolutional GANs (DCGAN)

Alec Radford, Luke Metz, Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, ICLR 2016

● Combine CNN and GAN for unsupervised learning
● Learns a hierarchy of feature representations
● Previous attempts to scale up GANs using CNNs unsuccessful

9
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DCGAN results

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32 ⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5
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DCGAN results
Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10

Generative models learn fundamental representations

= Zglasses

G�1( )

G�1( ) + Zglasses

Z space Image space

G

[DCGAN, Radford et al. 2015] 2 / 21
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DCGAN results

Under review as a conference paper at ICLR 2016
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the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
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Further work is needed to tackle this from of instability. We think that extending this framework

10
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DCGAN results
Under review as a conference paper at ICLR 2016

Figure 8: A ”turn” vector was created from four averaged samples of faces looking left vs looking
right. By adding interpolations along this axis to random samples we were able to reliably transform
their pose.

to other domains such as video (for frame prediction) and audio (pre-trained features for speech
synthesis) should be very interesting. Further investigations into the properties of the learnt latent
space would be interesting as well.
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Problems in GANs

1. No explicit representation of pg (x).

2. Easy to get trapped in local optima that memorize training data.

3. Hard to invert generative model to get back latent z from generated x.

4. Hard to achieve Nash equilibrium (Salimans et al. 2016).

5. Low dimensional supports: When the intrinsic dimension is low, then training GAN will be

unstable (Arjovsky and Leon Bottou 2017).

6. Vanishing gradient: When the discriminator is perfect, loss function is zero and there is

not any training.

7. Mode collapse: During the training, the generator may collapse to a setting where it

always produces same outputs.

26 / 84



Improved GAN Training

1. Feature Matching: This suggests to optimize the discriminator to inspect whether the

generator’s output matches expected statistics of the real samples. New objective function

∥Ex∼pr f (x)− Ez∼pz (z)f (G (z))∥22
where f (x) can be any computation of statistics of features, such as mean or median.

2. Mini-batch Discrimination: Instead of processing each point independently, the

discriminator is able to digest the relationship between training data points in one batch.

3. Historical Averaging: This adds a term penalizes the training speed when parameters are

changing too dramatically in time.

4. One-sided Label Smoothing: When feeding the discriminator, instead of providing 1 and

0 labels, use soften values such as 0.9 and 0.1

5. Virtual Batch Normalization: Each data sample is normalized based on a fixed batch

(reference batch) of data rather than within its minibatch. The reference batch is chosen

once at the beginning and stays the same through the training.

6. Adding Noises:

7. Use Better Metric of Distribution Similarity: The JS divergence fails to provide a

meaningful value when two distributions are disjoint.
27 / 84
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Non-saturating GAN

1. G is poor in early learning and samples are clearly different from the training data.

2. Therefore, D can reject the generated samples with high confidence.

3. In this situation, log(1− D(G (z))) saturates. This means D(G (z)) is close to zero.

4. As a result, the back-propagated gradient ∇θG log(1− D(G (z))) is also small.

5. Fortunately, the following simple mathematical trick solves the problem:

min J(G ) = min
1

m

m∑

i=1

log(1− D(G (zi )))

= max
1

m

m∑

i=1

logD(G (zi ))

= min− 1

m

m∑

i=1

logD(G (zi ))

6. This trick ensures a higher gradient signal early in the training.
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Non-saturating GAN

1. This new objective function results in the same fixed point of the dynamics of D and G

but provides much larger gradients early in learning.
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Figure 26.5: Saturating log(1 − D(G(z))) vs non-saturating − log D(G(z)) loss functions. The non-saturating
loss provides stronger gradients when the discriminator is easily detecting that generated samples are fake.
Generated by gan_loss_types.ipynb

for each optimization step of the generator is computationally prohibitive, which motivates the use
of alternating updates: performing a few gradient steps to update the discriminator parameters,
followed by a generator update. Note that when updating the discriminator, we keep the generator
parameters fixed, and when updating the generator, we keep the discriminator parameters fixed. We
show a general algorithm for these alternative updates in Algorithm 26.1.

Algorithm 26.1: General GAN training algorithm with alternating updates
1 Initialize φ, θ
2 for each training iteration do
3 for K steps do
4 Update the discriminator parameters φ using the gradient ∇φLD(φ,θ);

5 Update the generator parameters θ using the gradient ∇θLG(φ,θ)

6 Return φ, θ

We are thus interested in computing ∇φLD(φ,θ) and ∇θLG(φ,θ). Given the choice of loss
functions follows the general form in Equations 26.44 and 26.45 both for the discriminator and
generator, we can compute the gradients that can be used for training. To compute the discriminator
gradients, we write:

∇φLD(φ,θ) = ∇φ
[
Ep∗(x)g(Dφ(x)) + Eqθ(x)h(Dφ(x))

]
(26.46)

= Ep∗(x)∇φg(Dφ(x)) + Eqθ(x)∇φh(Dφ(x)) (26.47)

where ∇φg(Dφ(x)) and ∇φh(Dφ(x)) can be computed via backpropagation, and each expectation
can be estimated using Monte Carlo estimation. For the generator, we would like to compute the
gradient:

LG(φ,θ) = ∇θEqθ(x)l(Dφ(x)) (26.48)

Draft of “Probabilistic Machine Learning: Advanced Topics”. April 1, 2023

2. The non-saturating game is heuristic, not being motivated by theory.
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Non-saturating GAN

1. The non-saturating game has other problems such as unstable numerical gradient for

training G .

2. With optimal D∗, we have

Ex∼pg [− logD∗(x)] + Ex∼pg [log(1− D∗(x))] = Ex∼pg

[
log(1− D∗(x))

logD∗(x)

]

= Ex∼pg

[
pg (x)

pdata(x)

]

= DKL

(
pg || pdata

)

3. Therefore, we have

Ex∼pg [− logD∗(x)] = DKL

(
pg || pdata

)
− Ex∼pg [log(1− D∗(x))]

4. We also had

Ex∼pdata [logD
∗(x)] + Ex∼pg [log(1− D∗(x))] = 2DJS

(
pg || pdata

)
− 2 log 2

5. Therefore, we obtain

Ex∼pg [log(1− D∗(x))] = 2DJS

(
pg || pdata

)
− 2 log 2− Ex∼pdata [logD

∗(x)]
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Non-saturating GAN

1. By combining the preceding equations, we obtain

Ex∼pg [− logD∗(x)] = DKL

(
pg || pdata

)
− 2DJS

(
pg || pdata

)
+ Ex∼pdata [logD

∗(x)] + 2 log 2

2. This alternative loss is contradictory because of:

The first term aims to make the divergence between the generated distribution and the real

distribution as small as possible.

The second term aims to make the divergence between these two distributions as large as

possible due to the negative sign.

3. This will bring unstable numerical gradient for training G .
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Maximum likelihood game

1. There are many methods to approximate the objective function of GANs.

2. Under the assumption that the discriminator is optimal, minimizing

Ez∼pz

[
− exp(σ−1(logD∗(G (z))))

]
= Ez∼pz

[
− D∗(G (z))

1− D∗(G (z))

]

where σ is the logistic sigmoid function.
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Generative Aversarial networks

Mode Collapsea

aSome slides are taken from Sargur N. Srihari lectures



Mode Collapse

1. Real-life data is multi-modal (e.g.10 in MNIST).

2. Mode collapse occurs when GAN generates only few modes.

Deep Learning                            Srihari

Mode Collapse
• Real-life data is multimodal (10 in MNIST)
• Mode collapse: when few modes generated
• Samples generated by two different GANs:

– Row 2 a single mode ( for 6)

8

Row 1 has all
10 modes

Row 2 has only
1 mode for 6
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Mode Collapse

1. Mode collapse is a hard problem to solve in GAN.

2. A complete collapse is not common but a partial collapse happens often.

3. The following images with the same underlined color look similar and the mode starts

collapsing.

Deep Learning                            Srihari

Partial Mode Collapse

• Mode collapse: a hard problem to solve in GAN 
• A complete collapse is not common but a partial 

collapse happens often 
• Images below with the same underlined color 

look similar and the mode starts collapsing

9
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Reason for Mode Collapse

1. The goal of generator is to create images to overcome discriminator.

2. The generator use the following gradient to update its parameters.

∇θg

1

m

m∑

i=1

log(1− D(G (zi )))

3. Consider the case when generator is trained without updates to discriminator.

Generated images converge to x∗ that overcome discriminator.

These images are most realistic from the discriminator perspective.

In this extreme, x∗ will be independent of z.

x∗ = argmaxx D(x)

Mode collapses to a single point in which the gradient associated with z approaches zero, i.e.

∂J

∂z
a ≈ 0
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Reason for Mode Collapse

1. When we restart the training in discriminator, the most effective way to detect generated

images is to detect this single mode.

2. Since generator desensitizes the impact of G already, the gradient from discriminator will

likely push the single point around for the next most vulnerable mode.

3. This is not hard to find, because the generator produces such an imbalance of modes in

training that it deteriorates its capability to detect others.

4. Now, both networks are overfitted to exploit the short- term opponent weakness.

5. This turns into to a cat-and-mouse game and the model will not converge.
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Nash Equilibrium

1. GAN is a zero-sum non-cooperative game.

If one wins the other loses.

Zero-sum game is also called minimax.

Our opponent wants to maximize its actions and our actions are to minimize them.

2. In game theory, GAN converges when discriminator and generator reach a Nash

equilibrium.

3. This is the optimal point for the minimax equation.

min
G

max
D

V (D,G ) = min
G

max
D

Ex∼ pdata(x)
[logD(x)] + Ez∼ px(g)

[log(1− D(x))]

4. Nash equilibrium is when one player will not change action irrespective of opponent action.
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Nash Equilibrium

1. Consider two player A and B which control the values x and y , respectively. A to

maximize xy while B wants to minimize it.

min
B

max
A

V (D,G ) = xy

2. Nash equilibrium is x = y = 0.

3. We update x and y based on gradients of V .

Deep Learning                            Srihari

Nash Equilibrium & Gradient Descent
• We update  x and y based on gradients of V

• where α is the learning rate 

– From  plots of  x, y, xy against training iterations, 
solution does not converge

14

4. These plots show x , y , xy against training iterations.

5. It is apparent that solution does not converge
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Variants of GAN



Variants of GAN

There are many papers related to GANs (Gui et al. 2023a). Some examples are:

1. InfoGAN (Chen et al. 2016)

2. Information Bottleneck GAN (Jeon et al. 2021)

3. Conditional GANs (Mirza and Osindero 2014)

4. BiGAN (Donahue, Krähenbühl, and Darrell 2017)

5. CycleGAN (Zhu, Park, et al. 2017)

6. f-GAN (Nowozin, Cseke, and Tomioka 2016)

7. Wasserstein GAN (Arjovsky, Chintala, and Léon Bottou 2017).
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Variants of GAN

InfoGAN



InfoGAN

1. Rather than utilizing a single unstructured noise vector z, the input noise vector was

decomposed into two parts (Chen et al. 2016):

z which is called the incompressible noise, and

c which is called the latent code and will target the significant structured semantic features

of the real data distribution.

2. InfoGAN aims to solve

min
G

max
D

VI (D,G ) = V (D,G )− λMI (c,G (z, c))

where

V (D,G) is the objective function of original GAN,

G(z, c) is the generated sample,

MI (c,G(z, c)) is the mutual information, and

λ is the tunable regularization parameter.

3. Maximizing MI (c,G (z, c)) means maximizing the mutual information between c

andG (z, c) to make c contain as much important and meaningful features of the real

samples as possible.
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InfoGAN

1. It is very difficult to optimize MI (c,G (z, c)) directly in practice since it requires access to

the posterior p(c | x).

2. We can have a lower bound of MI (c,G (z, c)) by defining an auxiliary distribution q(c | x)
to approximate p(c | x).

3. The new objective function of InfoGAN is

min
G

max
D

VI (D,G ) = V (D,G )− λLI (c, q)

4. LI (c, q) is the lower bound of MI (c,G (z, c)) and is

MI (c,G (z, c)) = H(c)− H(c | G (z, c))

= Ex∼G(z,c)

[
Ec′∼p(c | c)[log p(c′ | x)]

]
+ H(c)

= Ex∼G(z,c)


DKL( p(. | x) || q(. | x))︸ ︷︷ ︸

≥0

+Ec′∼ p(c | c)[log q(c′ | x)]


+ H(c)

≥ Ex∼G(z,c)

[
Ec′∼ p(c | c)[log q(c′ | x)]

]
+ H(c)

5. This technique of lower bounding mutual information is known as Variational Information

Maximization.
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InfoGAN

Lemma

For random variables X,Y and function f (x, y) under suitable regularity conditions, we have

Ex∼X,y∼Y[f (x, y)] = Ex∼X,y∼Y | x,x′∼X | y [f (x
′, y)]

Proof.

Ex∼X,y∼Y | x[f (x, y)] =
∫

x

p(x)

∫

y

p(y | x)f (x, y)dxdy

=

∫

x

∫

y

p(x, y)f (x, y)dxdy

=

∫

x

∫

y

p(x, y)f (x, y)

∫

x′
p(x′ | y)dx′dxdy

=

∫

x

p(x)

∫

y

p(y | x)
∫

x′
p(x′ | y)f (x′, y)dx′dxdy

= Ex∼X,y∼Y | x,x′∼X | y [f (x
′, y)]
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InfoGAN

1. By using the above lemma, we can define LI (G , q) of MI (c,G (z, c)) as

LI (G , q) = Ec∼ p(c),x∼G(z,c)[log q(c | x)] + H(c)

= Ex∼G(z,c)

[
Ec′∼ p(c | x)[log q(c | x)]

]
+ H(c)

≤ MI (c,G (z, c))

2. LI (G , q) is easy to approximate with Monte Carlo simulation.

3. LI (G , q) can be added to GAN’s objectives with no change to GAN’s training procedure.

4. InfoGAN is defined as the following minimax game (λ is a hyperparameter) :

min
G ,q

max
D

VI (D,G , q) = V (D,G )− λLI (c, q)
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InfoGAN

(a) Varying c1 on InfoGAN (Digit type) (b) Varying c1 on regular GAN (No clear meaning)

(c) Varying c2 from �2 to 2 on InfoGAN (Rotation) (d) Varying c3 from �2 to 2 on InfoGAN (Width)

Figure 2: Manipulating latent codes on MNIST: In all figures of latent code manipulation, we will
use the convention that in each one latent code varies from left to right while the other latent codes
and noise are fixed. The different rows correspond to different random samples of fixed latent codes
and noise. For instance, in (a), one column contains five samples from the same category in c1, and a
row shows the generated images for 10 possible categories in c1 with other noise fixed. In (a), each
category in c1 largely corresponds to one digit type; in (b), varying c1 on a GAN trained without
information regularization results in non-interpretable variations; in (c), a small value of c2 denotes
left leaning digit whereas a high value corresponds to right leaning digit; in (d), c3 smoothly controls
the width. We reorder (a) for visualization purpose, as the categorical code is inherently unordered.

latent code that smoothly changes a face from wide to narrow is learned even though this variation
was neither explicitly generated or labeled in prior work.

On the chairs dataset, DC-IGN can learn a continuous code that represents rotation. InfoGAN again is
able to learn the same concept as a continuous code (Figure 4a) and we show in addition that InfoGAN
is also able to continuously interpolate between similar chair types of different widths using a single
continuous code (Figure 4b). In this experiment, we choose to model the latent factors with four
categorical codes, c1,2,3,4 ⇠ Cat(K = 20, p = 0.05) and one continuous code c5 ⇠ Unif(�1, 1).

Next we evaluate InfoGAN on the Street View House Number (SVHN) dataset, which is significantly
more challenging to learn an interpretable representation because it is noisy, containing images of
variable-resolution and distracting digits, and it does not have multiple variations of the same object.
In this experiment, we make use of four 10�dimensional categorical variables and two uniform
continuous variables as latent codes. We show two of the learned latent factors in Figure 5.

Finally we show in Figure 6 that InfoGAN is able to learn many visual concepts on another challenging
dataset: CelebA [30], which includes 200, 000 celebrity images with large pose variations and
background clutter. In this dataset, we model the latent variation as 10 uniform categorical variables,
each of dimension 10. Surprisingly, even in this complicated dataset, InfoGAN can recover azimuth as
in 3D images even though in this dataset no single face appears in multiple pose positions. Moreover
InfoGAN can disentangle other highly semantic variations like presence or absence of glasses,
hairstyles and emotion, demonstrating a level of visual understanding is acquired.

6

The performance of InfoGAN for disentanglement is constantly reported to be lower than

VAE-based models. 44 / 84



Variants of GAN

Information Bottleneck Generative Adversarial

Networks



Information Bottleneck Principle

1. Let the input variable X and the target variable Y distributed according to some joint data

distribution p(x, y).

2. The goal of information bottleneck (IB) is to obtain a compressive representation Z from

the input X, while maintaining the predictive information about the target Y as much as

possible (Tishby, Pereira, and Bialek 1999; Tishby and Zaslavsky 2015).

3. The objective for the IB is maxqϕ(z | x){MI (Z,Y)− βMI (Z,X)}.

4. IB aims at obtaining the optimal representation encoder qϕ(z | x) that simultaneously

balances the tradeoff between the maximization and minimization of both MI.

5. Accordingly, the learned representation Z can act as a minimal sufficient statistic of X for

predicting Y.

6. The IB principle provides an intuitive meaning for the good representation from the

perspective of information theory.
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Information Bottleneck GAN (IB-GAN)

1. InfoGAN’s objective lacks a MI minimization term compare to the IB objective.

2. Hence, MI minimization term adopted to InfoGAN’s objective to get the IB-GAN

objective (Jeon et al. 2021):

minGmaxDLIB−GAN(D,G ) = V (D,G )−
[
MI L(z,G (z))− βMIU(z,G (z))

]

s.t. MI L(z,G (z)) ≤ MIg (z,G (z)) ≤ MIU(z,G (z))

where MI L and MIU are the lower and upper bound of generative MI (MIg (z, x)),

respectively given by

MIg (z, x) = E pθ(x | z) p(z)

[
log

pθ(x | z) p(z)
pθ(x) p(z)

]

3. For the optimization, first a tractable lower-bound of the generative MI is defined as

MIg (z,G (z)) = E pθ(x | z) p(z)

[
log

pθ(x | z) p(z)
pθ(x) p(z)

]

≥ MI L(z,G (z))

= E pθ(x | z) p(z)

[
log

qϕ(z | x)
p(z)

]

= E pθ(x | z) p(z)
[
log qϕ(z | x)

]
+ H(z)
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Information Bottleneck GAN (IB-GAN)

1. The same approach was used to derive the upper bound (Jeon et al. 2021).

2. Then, a variational approximation of objective function can be obtained as

minG ,qϕ,eψmaxDL̂IB−GAN(D,G , qϕ, eϕ) = V (D,G )

− E p(z)

[
E pθ(x | z) eψ(r)

[
log qϕ(z | x)

]]

+ β DKL( eψ(r | z) || m(r))

where m(r) = N (0, I) is a prior and eψ(r | z) = N (µψ(z), σψ(z)) is a encoder as in VAE.
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Information Bottleneck GAN Results

Azimuth

Hair Color

Smile
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Information Bottleneck GAN Results

Background

Skintone

Gender
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Variants of GAN

f-GAN



f-Divergence

1. One way to measure the discrepancy between two probability distributions is through the

KL divergence.

DKL(p || q) =
∫

x

p(x) log

(
p(x)

q(x)

)
dx

2. Other way to measure the discrepancy between two probability distributions is through the

Jensen-Shannon divergence.

DJS(p || q) = 1

2
DKL

(
p || p+q

2

)
+

1

2
DKL

(
q || p+q

2

)

3. Both DKL(p || q) and DJS(p || q) are special cases of the more general f-divergence (Ali

and Silvey 2018).

Definition (f-divergence)

Given a convex function f satisfying a and two densities p and q, an f-divergence defined

Df (p || q) =
∫ ∞

−∞
p(x)f

(
p(x)

q(x)

)
dx

aThere are more constraints on function f , such as f must be a convex, lower-semicontinuous function with

f (1) = 0.

50 / 84



f-Divergence

1. Some f-divergences are:

KL-divergence f (t) = t log t

Hellinger distance f (t) =
(√

t − 1
)2

Total variation distance f (t) =
1

2
|t − 1|

Pearson χ2-divergence, f (t) = (t − 1)2

2. Homework

Show that for any two probability distributions p and q, we have DJS(p || q) ≥ 0.

Show that for any two probability distributions p and q, we have DJS(p || q) is symmetric.

Show that for any two probability distributions p and q, we have DJS(p || q) is not a metric.

Show that for any two probability distributions p and q and any convex function f , we have

Df (p || q) ≥ 0.

3. For more about mathematical background of GAN, please read Wang 2020.
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f-GAN

1. How to minimize DKL

(
pdata || pg

)
?

DKL

(
pdata || pg

)
=

∫

x

pdata(x) log
pdata(x)

pg (x)
dx

=

∫

x

pdata(x) log pdata(x)dx−
∫

x

pdata(x) log pg (x)dx

= C −
∫

x

pdata(x) log pg (x)dx

= C − Ex∼ pdata(x)

[
log pg (x)

]

2. Can we use the same trick to minimize DJS

(
pdata || pg

)
?

DJS(p || q) = 1

2
DKL

(
p || p+q

2

)
+

1

2
DKL

(
q || p+q

2

)

3. We cannot do the same trick, because requires knowledge of mixture, which is unknown!
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f-GAN

1. Every convex, lower-semicontinuous function f has a convex conjugate function f ∗, known

as Fenchel conjugate.

2. This function is defined as

f ∗(t) = sup
u∈dom(f )

{ut − f (u)}

3. The function f ∗ is again convex and lower-semicontinuous and the pair (f , f ∗) is dual to

another in the sense that f ∗∗ = f .

4. Specifically, we obtain a lower bound to any f-divergence via its Fenchel conjugate:

Df

(
pdata || pg

)
≥ sup

T∈T

(
Ex∼pdata [T (x)]− Ex∼pg [f

∗(T (x))]
)

5. Therefore we can choose any f-divergence that we desire.

6. Let parameterize T by ϕ and G by θ and obtain the following f-GAN objective:

minθmaxϕF (θ, ϕ) = Ex∼pdata [Tϕ(x)]− Ex∼pg [f
∗(Tϕ(x))]

7. Intuitively, we can think about this objective as the generator trying to minimize the

divergence estimate, while the discriminator tries to tighten the lower bound.
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f-GAN

1. Similar to a GAN, we use two neural networks:

G is the generative model and

T is the variational function.

2. The process is Similar to GAN

G takes a random vector and outputs a sample and

T takes a sample and returns a scalar.

3. The objective function is

minθmaxϕF (θ, ϕ) = Ex∼pdata [Tϕ(x)]− Ex∼pg [f
∗(Tϕ(x))]

4. The expected values are approximated through minibatches.

The first term is sampled from the training set without replacement.

The second term is taken from current G(z).
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f-GAN Results

Training divergence KDE hLLi (nats) ± SEM

Kullback-Leibler 416 5.62
Reverse Kullback-Leibler 319 8.36
Pearson �2 429 5.53
Neyman �2 300 8.33
Squared Hellinger -708 18.1
Jeffrey -2101 29.9
Jensen-Shannon 367 8.19
GAN 305 8.97

Variational Autoencoder [18] 445 5.36
KDE MNIST train (60k) 502 5.99

Table 4: Kernel Density Estimation evaluation on the MNIST test data set. Each
KDE model is build from 16,384 samples from the learned generative model.
We report the mean log-likelihood on the MNIST test set (n = 10, 000) and the
standard error of the mean. The KDE MNIST result is using 60,000 MNIST
training images to fit a single KDE model.

Figure 2: MNIST model
samples trained using KL,
reverse KL, Hellinger,
Jensen from top to bottom.

LSUN Natural Images. Through the DCGAN work [27] the generative-adversarial approach has
shown real promise in generating natural looking images. Here we use the same architecture as as
in [27] and replace the GAN objective with our more general f -GAN objective.

We use the large scale LSUN database [35] of natural images of different categories. To illustrate
the different behaviors of different divergences we train the same model on the classroom category
of images, containing 168,103 images of classroom environments, rescaled and center-cropped to
96-by-96 pixels.

Setup. We use the generator architecture and training settings proposed in DCGAN [27]. The model
receives z 2 Uniformdrand

(�1, 1) and feeds it through one linear layer and three deconvolution
layers with batch normalization and ReLU activation in between. The variational function is the same
as the discriminator architecture in [27] and follows the structure of a convolutional neural network
with batch normalization, exponential linear units [4] and one final linear layer.

Results. Figure 3 shows 16 random samples from neural samplers trained using GAN, KL, and
squared Hellinger divergences. All three divergences produce equally realistic samples. Note that the
difference in the learned distribution Q✓ arise only when the generator model is not rich enough.

(a) GAN (b) KL (c) Squared Hellinger
Figure 3: Samples from three different divergences.

5 Related Work

We now discuss how our approach relates to existing work. Building generative models of real world
distributions is a fundamental goal of machine learning and much related work exists. We only
discuss work that applies to neural network models.
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Variants of GAN

Wasserstein GAN



Wasserstein GAN (WGAN)

1. Wasserstein Distance is a measure of the distance between two probability distributions.

2. When dealing with the continuous probability domain, the distance becomes

DW

(
pdata || pg

)
= inf
γ∼Π(pdata,pg )

E(x,y)∼γ [∥x− y∥]

where Π(pdata, pg ) is the set of all possible joint probability distributions of pdata and pg .

3. It is intractable to exhaust all the possible joint distributions in Π(pdata, pg ) to compute

infγ∼Π(pdata,pg )
E(x,y)∼γ [∥x− y∥], the following metric is used.

DW

(
pdata || pg

)
=

1

K
sup

∥f ∥L≤K

Ex∼pdata [f (x)]− Ex∼pg [f (x)]

where ∥f ∥L ≤ K means that f is K -Lipschitz.

4. Why Wasserstein is better than JS or KL divergence?

Even when two distributions are located in lower dimensional manifolds without overlaps,

Wasserstein distance can still provide a meaningful and smooth representation of the

distance in-between.
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Wasserstein GAN (WGAN)

1. In WGAN, discriminator network instead of producing the probability of generating real

data, the network produces a scaler score (Arjovsky and Leon Bottou 2017).

2. This score can be interpreted as how real the input images are.

3. In reinforcement learning, we call it the value function which measures how good a input is.

4. We rename the discriminator to critic to reflect its new role.

5. The loss function for WGAN is

V (pdata, pg ) = DW

(
pdata || pg

)

= max
w∈W

Ex∼pdata [fw (x)]− Ez∼ pz(z)
[fw (gθ(z))]

f comes from a family of K -Lipschitz continuous functions {fw}w∈W parameterized by w .

6. The discriminator model is used for learning w to find a good fw and the loss function is

configured as measuring the Wasserstein distance between pdata and pdata.
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Wasserstein GAN (WGAN)

1. WGAN architecture is (Arjovsky, Chintala, and Léon Bottou 2017).
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Wasserstein GAN (WGAN)

1. The Wasserstein formulation is empirically shown to avoid mode collapse.

2. The reason is that, in this formulation one can maximize the discriminator to optimality,

before updating the generator.

3. In contrast to the JS formulation, the optimal discriminator does not introduce vanishing

gradients.

4. The following toy example shows this concept.

where W is chosen such that the Lipschitz constant of Dw be smaller than a constant K. In practice
this is enforced by constraining the infinity norm of the weights (known as clipping).

No mode collapse: The Wasserstein formulation is empirically shown to avoid mode collapse.
The reason is that, in this formulation one can maximize the discriminator to optimality, before
updating the generator. In contrast to the JS formulation, the optimal discriminator does not
introduce vanishing gradients. This is illustrated in Figure 12.2 (The toy example illustrating this
concept is Fig. 2 in [ACB17]).

real 
data

generated
data

GAN

WGAN

zero gradient

linear gradient

Figure 12.2: Cartoon illustration of how vanishing gradients is avoided in WGAN. The reason is
that the Lischitz constant of the discriminator is constrained to be less than one in WGAN.

Open question: The main open question regarding both formulations is the convergence. The
existing result regarding the convergence is that if the first maximization is performed optimally in
the function space corresponding to D, then the gradient descent on the space of the probability
distributions for P✓ would converge (since the distance is convex function of the probability
distribution) (Prop. 2 in [GPAM+14]).

Another open question, is theoretical understanding of mode collapse even in the simple and ideal
cases.

12.3 Other stu↵

There are many existing empirical results regarding GANs. A good source is [Goo16] which also
includes all practical tricks one may use (e.g using the labels). Also [ACB17] contains the empirical
results for WGAN with the conclusion that WGAN are more robust with neural network architecture,
the Wasserstein metric is a better measure for quality of the generated images, and mode collapse
does not happen.

12.4 Appendix

Proof of equation (12.2): Express the expectation in integral form

E[log(D(X)) + log(1 � D(X̂✓))] =

Z h
log(D(x))pX(x) + log(1 � D(x))pX̂✓

(x)
i
dx

5
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Wasserstein GAN Results
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Wasserstein GAN Results

Training curves and samples at different stages of training.

Left: The generator is an MLP with 4 hidden layers and 512 units at each layer.

Right: The generator is a standard DCGAN
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GAN Inversion



Introduction

1. Recent studies have shown that GANs effectively encode rich semantic information in

intermediate features and latent spaces from the supervision of image generation.

2. These methods can synthesize images with a diverse range of attributes, such as faces

with different ages and expressions, and scenes with different lighting conditions.

3. GAN inversion aims to invert a given image back into the latent space of a pretrained

GAN model.

4. The image can then be faithfully reconstructed from the inverted code by the generator.

have two properties: 1) reconstructing the input image faith-
fully and photorealistically and 2) facilitating downstream
tasks. Achieving these two properties is also the goal of
GAN inversion. Section 3.1 introduces many different pre-
trained GAN models GðzÞ. Subsequent sections introduce
the efforts taken by different GAN inversion methods to
reach the goal. To evaluate the performance of GAN inver-
sion methods, we consider the two important aspects, how
photorealistic (perceptual quality) and faithful (inversion
accuracy) the reconstructed image is, in Section 3.2. The first
aspect depends on how the formulation is solved. It is usu-
ally a nonconvex optimization problem due to the noncon-
vexity of GðzÞ, for which finding accurate solutions is
difficult. The second aspect is primarily decided by which
latent space to use. Section 4.1 introduces, analyses, and
compares the characteristics of different latent spaces. In
Sections 4.2, 4.3, and 4.4, we introduce how existing meth-
ods have attempted to provide solutions and discuss some
important characteristics of these GAN inversion methods.
Applications and future directions of GAN inversion are
introduced in Sections 5 and 6.

2 PROBLEM DEFINITION AND OVERVIEW

It is well known that GANs [1], [11], [13] can generate high-
resolution and photorealistic fake images. However, it
remains challenging to apply these unconditional GANs to
the editing of real images due to the lack of inference capa-
bility. Given an image, GAN inversion aims to recover the
latent code in a latent space of a pretrained unconditional
GAN model, and thus enables numerous image editing
applications by manipulating the latent code. In this case,
the pretrained unconditional GAN model can be used with-
out modifying the architecture. Ideally the found latent
code of the given image should achieve two goals: 1) recon-
structing the input image faithfully and photorealistically
and 2) facilitating downstream tasks.

We first define the problem of GAN inversion under a
unified mathematical formulation. The generator of an
unconditional GAN learns the mapping G : Z ! X . When

z1; z2 2 Z are close in Z space, the corresponding images
x1; x2 2 X are visually similar. GAN inversion maps data x
back to latent representation z# or, equivalently, finds an
image x# that can be entirely synthesized by the well-
trained generator G and remain close to the real image x.
Formally, denoting the signal to be inverted as x 2 Rn, the
well-trained generator as G : Rn0 ! Rn, and the latent vec-
tor as z 2 Rn0 , we study the following inversion problem:

z# ¼ argmin
z

‘ðGðzÞ; xÞ; (1)

where ‘ð%Þ is a distance metric in the image or feature space,
and G is assumed to be a feed-forward neural network.
Typically, ‘ð%Þ can be based on ‘1, ‘2, perceptual [26] or
LPIPS [27] metrics. Some other constraints on latent
codes [19] or face identity [28] could also be included in
practice. From the obtained z#, we can obtain the original
image; we can vary z# to further obtain the manipulated
image.

The second goal as facilitating downstream tasks is pri-
marily decided by which latent space to use (see Section 4.1).
The first goal depends on how to solve Equation (1) accu-
rately, which is usually a nonconvex optimization problem
due to the nonconvexity ofGðzÞ. Thus it is not easily amena-
ble to find accurate solutions. Many methods [20], [21], [28]
have been developed to solve Equation (1) with formulation
based on learning, optimization, or both. A learning-based
inversion method aims to learn an encoder network to map
an image into the latent space such that the reconstructed
image based on the latent code looks as similar to the origi-
nal one as possible. An optimization-based inversion appr-
oach directly solves the objective function through back-
propagation to find a latent code that minimizes pixel-wise
reconstruction loss. A hybrid approach first uses an encoder
to generate initial latent code and then refines it with an
optimization algorithm. Generally, learning-based GAN
inversion methods cannot faithfully reconstruct the image
content. For example, learning-based inversion methods
have been known to sometimes fail in preserving identities
as well as some other details when reconstructing face
images [19], [28]. While optimization-based techniques
have achieved superior image reconstruction quality, their
inevitable drawback is the significantly higher computa-
tional cost [21], [22]. Thus, recent improvements of learn-
ing-based GAN inversion methods mainly focus on how to
faithfully reconstruct images, e.g., integrating an additional
facial identity loss during training [28], [29] or proposing an
iterative feedback mechanism [30]. Recent improvements of
optimization-based methods emphasize on how to find the
desired latent code more quickly thus propose several ini-
tialization strategies [21], [22] and optimizers [20], [24].
Reconstruction quality and inference time cannot be simul-
taneously achieved for existing inversion approaches,
resulting in a “quality-time tradeoff”. Although some
hybrid approaches are additionally proposed to balance
this tradeoff, it remains a challenge to quickly find an accu-
rate latent code.

Similar to GAN inversion, some tasks also aim to learn
the inverse mapping of GAN models. Some methods [31],
[32], [33], [34] use additional encoder networks to learn the
inverse mapping of GANs, but their goals are to jointly train

Fig. 1. Illustration of GAN inversion. Different from the conventional sam-
pling and generation process using trained generator G, GAN inversion
maps a given real image x to the latent space and obtains the latent
code z#. The reconstructed image x# is then obtained by x# ¼ Gðz#Þ. By
varying the latent code z# in different interpretable directions e.g., z# þ
n1 and z# þ n2 where n1 and n2 model the age and smile in the latent
space respectively, we can edit the corresponding attribute of the real
image. The reconstructed results are from [19].
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GAN Inversion

Definition (GAN Inversion)

1. The generator of an unconditional GAN learns the mapping G : Z 7→ X .

2. When z1, z2 ∈ Z are close in Z space, the corresponding images x1, x2 ∈ X are visually

similar.

3. GAN inversion maps data x back to latent representation z∗ or, equivalently, finds an

image x∗ that can be entirely synthesized by the well-trained generator G and remain

close to the real image x.

4. Formally, denoting the signal to be inverted as x ∈ Rn, the well-trained generator as

G : Rn0 7→ Rn, and the latent vector as z ∈ Rn0 , we study the following inversion

problem:

z∗ = argminz ℓ(G (z), x),

where ℓ is a distance metric in the image or feature space.

The obtained latent code for a given image should have two properties:

Reconstructing the input image faithfully and photo-realistically (how to solve the above

optimization problem).

Facilitating downstream tasks (use of latent space).
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GAN Inversion Methods

1. A learning-based inversion method aims to learn an encoder network to map an image

into the latent space such that the reconstructed image based on the latent code looks as

similar to the original one as possible.

2. An optimization-based inversion approach directly solves the objective function through

back-propagation to find a latent code that minimizes pixel-wise reconstruction loss.

3. A hybrid approach first uses an encoder to generate initial latent code and then refines it

with an optimization algorithm.

(denoted by z 2 Z), as shown in Fig. 2. The structure they
form is typically called latent Z space. The Z space is appli-
cable to all the unconditional GAN models such as
DCGAN [38], PGGAN [11], BigGAN [12], and Style-
GANs [13], [14], [70]. However, the constraint of the Z space
subject to a normal distribution limits its representation
capacity and disentanglement for the semantic attributes.

W and Wþ Space. Recent GAN inversion methods mostly
adopt the latent spaces used in StyleGANs. These latent
spaces have higher degrees of freedom and thus are signifi-
cantly more expressive than the Z space. Fig. 2 illustrates
the latent spaces from which the inversion methods are con-
structed. Various latent spaces are derived from the original
Z space. StyleGAN [13] converts native z to the mapped
style vectors w by a nonlinear mapping network f imple-
mented with an 8-layer multilayer perceptron (MLP). This
intermediate latent space is named as W space. Due to the
mapping network and affine transformations, the W space
of StyleGAN contains more disentangled features than does
the Z space. Some studies [18], [21] analyze the separability
and semantics of both W and Z spaces. The expressiveness
of W space is, however, still limited, restricting the range of
images that can be faithfully reconstructed. Therefore, some
works [21], [22] make use of another layer-wise latent space,
Wþ, where a different intermediate latent vector, w, is fed
into each of the generator’s layers via AdaIN [76]. However,
inverting images into the Wþ space alleviates distortion at
the expense of compromised editability. Recent meth-
ods [59], [66] aim to balance the reconstruction-editability
tradeoff by predicting latent codes in Wþ that reside close
toW. For a StyleGAN with 18 layers,w 2 W has 512 dimen-
sions, andw 2 Wþ has 18"512 dimensions.

S Space. The style space S [56] is spanned by channel-
wise style parameters s, where s is transformed fromw 2 W
by using a different learned affine transformation for each
layer of the generator. In a 1024"1024 StyleGAN2 with 18
layers,W,Wþ, and S have 512, 9,216, and 9,088 dimensions,
respectively. This S space is proposed to achieve better spa-
tial disentanglement in the spatial dimension beyond the
semantic level. The spatial entanglement is primarily
caused by the intrinsic complexity of style-based genera-
tors [13] and the spatial invariance of AdaIN normaliza-
tion [76]. Xu et al. [92] replace original style codes with
disentangled multilevel visual features learned by an
encoder. They refer to the space spanned by these style
parameters as Y space, but it actually can be seen as a type
of S space. By directly intervening the style code s 2 S,
methods [56], [93] based on S space achieve fine-grained
controls on local translations.

P Space. A recent method, PULSE [35], has observed a
“soap bubble” effect when searching a generative model’s
latent space to find the desired points. As indicated by the
name, the “soap bubble” effect is that much of the density
of a high-dimensional Gaussian lies close to the surface of a
hypersphere. The above authors propose embedding
images onto the surface of a hypersphere in Z space. Based
on the observation, Zhu et al. [64] propose a P space. Since
the last leaky ReLU uses a slope of 0.2, the transformation
from W space to P space is x ¼ LeakyReLU5:0ðwÞ, where w
and x are latent codes in W and P space, respectively. They
make the simplest assumption that the joint distribution of

latent codes is approximately a multivariate Gaussian distri-
bution and further propose PN space to eliminate the
dependency and remove redundancy. The transformation
from P space to PN space is obtained by PCA whitening:
v̂ ¼ LL&1 ' CT ðx& mmÞ, where LL&1 is a scaling matrix, C is an
orthogonal matrix, and m is a mean vector. The parameters
C, LL, and mm are obtained from PCAðXÞ, in which X 2
R106"512 consists of 1 million latent samples in P space. Such
transformation normalizes the distribution to be of zero
mean and unit variance, leading to the P space being isotro-
pic in all directions. The Pþ

N space is extended from PN

space: v ¼ fLL&1CT ðxi & mmÞg18i¼1. Each of the latent codes is
used to demodulate the corresponding StyleGAN feature
maps at different layers.

4.2 GAN Inversion Methods
Fig. 3 shows three main techniques of GAN inversion, i.e.,
projecting images into the latent space based on learning,
optimization, or hybrid formulations. The inverted codes
have other properties, i.e., having supported resolution,
being semantic-aware, being layerwise, and having out-of-
distribution generalizability. Table 1 lists some important
properties of the existing GAN inversion methods.

4.2.1 Learning-Based GAN Inversion

Learning-based GAN inversion [20], [46], [94] typically
involves training an encoding neural network Eðx; uEÞ to
map an image, x, into the latent code z by

Fig. 3. Illustration of GAN inversion methods. (a) Given a well-trained
GAN model G, photo-realistic images xgen can be generated from ran-
domly sampled latent vectors z. GAN inversion aims to obtain the latent
code z( for a given image xreal. A learning-based inversion method
aims to learn an encoder network to map an image into the latent space
such that the reconstructed image based on the latent code look as simi-
lar to the original one as possible. An optimization-based inversion
approach directly solves the objective function through back-propagation
to find a latent code that minimizes pixel-wise reconstruction loss. A
hybrid approach first uses an encoder to generate initial latent code
and then refines it with an optimization algorithm. Depicted by the dotted
E, the well-trained encoder is included in [19] as a regularizer for optimi-
zation. Blue blocks represent trainable or iterative modules, and red
dashed arrows indicate the supervisions.
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Learning-based GAN inversion methods cannot faithfully reconstruct the image content.

Optimization-based techniques have achieved superior image reconstruction quality, their
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Learning-Based GAN Inversion

1. Learning-based GAN inversion typically involves training an encoding neural network

E (x; θE ) to map an image, x, into the latent code z by

θ∗E = argminθE

∑

n

L(G (E (x; θE )), x)

2. A good encoder for GAN inversion should have the following properties:

have accurate reconstruction

lightweight

data-efficiency

supporting high-resolution images

generalizability to arbitrary images

65 / 84



Invertible cGAN

1. Invertible cGAN enables to re-generate real images with deterministic

modifications (Perarnau et al. 2016).

Figure 2: Scheme of a trained IcGAN, composed of an encoder (IND approach) and a cGAN
generator. We encode a real image x into a latent representation z and attribute information y, and
then apply variations on it to generate a new modified image x0.

• IND: Two independent encoders. Ez and Ey are trained separately.
• IND-COND: Two encoders, where Ez is conditioned on the output of encoder Ey .

Recently, Dumoulin et al. [12] and Donahue et al. [13] proposed different approaches on how to train
an encoder in the GAN framework. One of the most interesting approaches consists in jointly training
the encoder with both the discriminator and the generator. Although this approach is promising, our
work has been completely independent of these articles and focuses on another direction, since we
consider the encoder in a conditional setting. Consequently, we implemented our aforementioned
approach which performs nearly equally [13] to their strategy.

4.2 Conditional GAN

We consider two main design decisions concerning cGANs. The first one is to find the optimal
conditional position y on the generator and discriminator, which, to our knowledge, has not been
previously addressed. Secondly, we discuss the best approach to sample conditional information for
the generator.

Conditional position In the cGAN, the conditional information vector y needs to be introduced
in both the generator and the discriminator. In the generator, y ⇠ pdata and z ⇠ pz (where
pz = N (0, 1)) are always concatenated in the filter dimension at the input level [16–18]. As for
the discriminator, different authors insert y in different parts of the model [16–18]. We expect that
the earlier y is positioned in the model the better since the model is allowed to have more learning
interactions with y. Experiments regarding the optimal y position will be detailed in section 5.2.

Conditional sampling There are two types of conditional information, y and y0. The first one is
trivially sampled from (x, y) ⇠ pdata and is used for training the discriminator D(x, y) with a real
image x and its associated label y. The second one is sampled from y0 ⇠ py and serves as input
to the generator G(z, y0) along with a latent vector z ⇠ pz to generate an image x0, and it can be
sampled using different approaches:

• Kernel density estimation: also known as Parzen window estimation, it consists in randomly
sampling from a kernel (e.g. Gaussian kernel with a cross-validated �).

• Direct interpolation: interpolate between label vectors y from the training set [16]. The
reasoning behind this approach is that interpolations can belong to the label distribution py .

• Sampling from the training set y0 ⇠ py, py = pdata: Use directly the real labels y from
the training set pdata. As Gauthier [18] pointed out, unlike the previous two approaches,
this method could overfit the model by using the conditional information to reproduce the
images of the training set. However, this is only likely to occur if the conditional information
is, to some extent, unique for each image. In the case where the attributes of an image are
binary, one attribute vector y could describe a varied and large enough subset of images,
preventing the model from overfitting given y.

4

2. The encoder E is composed of two sub-encoders:

Ez , which encodes an image to latent representation z,

Ey , which encodes an image to conditional information y.

3. To train Ez , a create dataset (x′, z) and minimize LEz = Ez∼pz,y
′∼py

[
∥z− Ez(G (z, y′))∥2

]
.

4. To train Ey , a dataset (x, y) is created and minimize LEy = Ex,y∼pdata

[
∥y − Ey (x)∥2

]
.
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Invertible cGAN

1. For encoders, several strategies can be used:

SNG: One single encoder with shared layers and two outputs.

IND: Two independent encoders and are trained separately.

IND-COND: Two encoders, where Ez is conditioned on the output of encoder Ey .

2. Architecture of the generator and discriminator of the used cGAN model.

(a) (b)

Figure 3: Architecture of the generator (a) and discriminator (b) of our cGAN model. The generator
G takes as input both z and y. In the discriminator, y is concatenated in the first convolutional layer.

Kernel density estimation and direct interpolation are, at the end, two different ways to interpolate
on py. Nevertheless, interpolation is mostly suitable when the attribute information y is composed
of real vectors y 2 Rn, not binary ones. It is not the case of the binary conditional information of
the datasets used in this paper (see section 5.1 for dataset information). Directly interpolating binary
vectors would not create plausible conditional information, as an interpolated vector y 2 Rn would
not belong to py 2 {0, 1}n nor pdata 2 {0, 1}n. Using a kernel density estimation would not make
sense either, as all the binary labels would fall in the corners of a hypercube. Therefore, we will
directly sample y from pdata.

4.3 Model architecture

Conditional GAN The work of this paper is based on the Torch implementation of the DCGAN1

[2]. We use the recommended configuration for the DCGAN, which trains with the Adam optimizer
[19] (�1 = 0.5,�2 = 0.999, ✏ = 10�8) with a learning rate of 0.0002 and a mini-batch size of 64
(samples drawn independently at each update step) during 25 epochs. The output image size used as
a baseline is 64 ⇥ 64. Also, we train the cGAN with the matching-aware discriminator method from
Reed et al. [16]. In Figure 3 we show an overview architecture of both generator and discriminator
for the cGAN. For a more detailed description of the model see Table 1.

Table 1: Detailed generator and discriminator architecture

Generator Discriminator
Operation Kernel Stride Filters BN Activation Operation Kernel Stride Filters BN Activation
Concatenation Concatenate z and y0 on 1st dimension Convolution 4 ⇥ 4 2 ⇥ 2 64 No Leaky ReLU
Full convolution 4 ⇥ 4 2 ⇥ 2 512 Yes ReLU Concatenation Replicate y and concatenate to 1st conv. layer
Full convolution 4 ⇥ 4 2 ⇥ 2 256 Yes ReLU Convolution 4 ⇥ 4 2 ⇥ 2 128 Yes Leaky ReLU
Full convolution 4 ⇥ 4 2 ⇥ 2 128 Yes ReLU Convolution 4 ⇥ 4 2 ⇥ 2 256 Yes Leaky ReLU
Full convolution 4 ⇥ 4 2 ⇥ 2 64 Yes ReLU Convolution 4 ⇥ 4 2 ⇥ 2 512 Yes Leaky ReLU
Full convolution 4 ⇥ 4 2 ⇥ 2 3 No Tanh Convolution 4 ⇥ 4 1 ⇥ 1 1 No Sigmoid

Encoder For simplicity, we show the architecture of the IND encoders (Table 2), as they are the ones
that give the best performance. Batch Normalization and non-linear activation functions are removed
from the last layer to guarantee that the output distribution is similar to pz = N (0, 1). Additionally,
after trying different configurations, we have replaced the last two convolutional layers with two fully
connected layers at the end of the encoder, which yields a lower error. The training configuration
(Adam optimizer, batch size, etc) is the same as the one used for the cGAN model.

Table 2: Encoder IND architecture. Last two layers have different sizes depending on the encoder (z
for Ez or y for Ey). ny represents the size of y.

Operation Kernel Stride Filters BN Activation
Convolution 5 ⇥ 5 2 ⇥ 2 32 Yes ReLU
Convolution 5 ⇥ 5 2 ⇥ 2 64 Yes ReLU
Convolution 5 ⇥ 5 2 ⇥ 2 128 Yes ReLU
Convolution 5 ⇥ 5 2 ⇥ 2 256 Yes ReLU
Fully connected - - z: 4096, y: 512 Yes ReLU
Fully connected - - z: 100, y: ny No None

1Torch code for DCGAN model available at https://github.com/soumith/dcgan.torch

5
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Invertible cGAN Results

1. Some IcGAN results:

(a) Comparison of different encoder configurations, where IND yields the most faithful

reconstructions.

(b) Reconstructed samples from MNIST and CelebA using IND configuration.

(a) (b)

Figure 4: (a) Comparison of different encoder configurations, where IND yields the most faithful
reconstructions. (b) Reconstructed samples from MNIST and CelebA using IND configuration.

Additionally, we compare the different encoder configurations in a quantitative manner by using the
minimal squared reconstruction loss Le as a criterion. Each encoder is trained minimizing Le with
respect to latent representations z (Lez) or conditional information y (Ley). Then, we quantitatively
evaluate different model architectures using Le as a metric on a test set of 150K CelebA generated
images. We find that the encoder that yields the lowest Le is also IND (0.429), followed closely by
IND-CND (0.432), and being SNG the worst case (0.500).

Furthermore, we can see an interesting property of minimizing a loss based on the latent space instead
of a pixel-wise image reconstruction: reconstructed images tend to accurately keep high-level features
of an input image (e.g. how a face generally looks) in detriment to more local details such as the
exact position of the hair, eyes or face. Consequently, a latent space based encoder is invariant to
these local details, making it an interesting approach for encoding purposes. For example, notice how
the reconstructions in the last row of CelebA samples in Figure 4b fill the occluded part of the face
by a hand. Another advantage with respect to element-wise encoders such as VAE is that GAN based
reconstructions do not look blurry.

5.4 Evaluating the IcGAN

In order to test that the model is able to correctly encode and re-generate a real image by preserving
its main attributes, we take real samples from MNIST and CelebA test sets and reconstruct them with
modifications on the conditional information y. The result of this procedure is shown in Figure 5,
where we show a subset of 9 of the 18 for CelebA attributes for image clarity. We can see that, in
MNIST, we are able to get the hand-written style of real unseen digits and replicate these style on all
the other digits. On the other hand, in CelebA we can see how reconstructed faces generally match
the specified attribute. Additionally, we noticed that faces with uncommon conditions (e.g., looking
away from the camera, face not centered) were the most likely to be noisy. Furthermore, attributes
such as mustache often fail to be generated especially on women samples, which might indicate that
the generator is limited to some unusual attribute combinations.

Manipulating the latent space The latent feature representation z and conditional information y
learned by the generator can be further explored beyond encoding real images or randomly sampling
z. In order to do so, we linearly interpolate both z and y with pairs of reconstructed images from the
CelebA test set (Figure 6a). All the interpolated faces are plausible and the transition between faces
is smooth, demonstrating that the IcGAN learned manifold is also consistent between interpolations.
Then, this is also a good indicator that the model is generalizing the face representation properly, as it
is not directly memorizing training samples.

In addition, we perform in Figure 6b an attribute transfer between pairs of faces. We infer the latent
representation z and attribute information y of two real faces from the test set, swap y between
those faces and re-generate them. As we previously noticed, the results suggest that z encodes pose,
illumination and background information, while y tends to represent unique features of the face.
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Invertible cGAN Results (MNIST dataset)

A real image is encoded into a latent representation z and conditional information y, and then

decoded into a new image. z is fixed for every row and y is modified for each column to obtain

variations.

(a)

(b)

Figure 5: The result of applying an IcGAN to a set of real images from MNIST (a) and CelebA (b). A
real image is encoded into a latent representation z and conditional information y, and then decoded
into a new image. We fix z for every row and modify y for each column to obtain variations.

(a) (b)

Figure 6: Different ways of exploring the latent space. In (a) we take two real images and linearly
interpolate both z and y to obtain a gradual transformation from one face to another. In (b) we take
two real images, reconstruct them and swap the attribute information y between them.

6 Conclusions

We introduce an encoder in a conditional setting within the GAN framework, a model which we call
Invertible Conditional GANs (IcGANs). It solves the problem of GANs lacking the ability to infer
real samples to a latent representation z, while also allowing to explicitly control complex attributes
of generated samples with conditional information y. We also refine the performance of cGANS
by testing the optimal position in which the conditional information y is inserted in the model. We
have found that for the generator, y should be added at the input level, whereas the discriminator
works best when y is at the first layer. Additionally, we evaluate several ways to training an encoder.
Training two independent encoders – one for encoding z and another for encoding y – has proven to
be the best option in our experiments. The results obtained with a complex face dataset, CelebA, are
satisfactory and promising.
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Figure 6: Different ways of exploring the latent space. In (a) we take two real images and linearly
interpolate both z and y to obtain a gradual transformation from one face to another. In (b) we take
two real images, reconstruct them and swap the attribute information y between them.

6 Conclusions

We introduce an encoder in a conditional setting within the GAN framework, a model which we call
Invertible Conditional GANs (IcGANs). It solves the problem of GANs lacking the ability to infer
real samples to a latent representation z, while also allowing to explicitly control complex attributes
of generated samples with conditional information y. We also refine the performance of cGANS
by testing the optimal position in which the conditional information y is inserted in the model. We
have found that for the generator, y should be added at the input level, whereas the discriminator
works best when y is at the first layer. Additionally, we evaluate several ways to training an encoder.
Training two independent encoders – one for encoding z and another for encoding y – has proven to
be the best option in our experiments. The results obtained with a complex face dataset, CelebA, are
satisfactory and promising.
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Invertible cGAN Results (CelebA dataset)

A real image is encoded into a latent representation z and conditional information y, and then

decoded into a new image. z is fixed for every row and y is modified for each column to obtain

variations.

(a)

(b)

Figure 5: The result of applying an IcGAN to a set of real images from MNIST (a) and CelebA (b). A
real image is encoded into a latent representation z and conditional information y, and then decoded
into a new image. We fix z for every row and modify y for each column to obtain variations.

(a) (b)

Figure 6: Different ways of exploring the latent space. In (a) we take two real images and linearly
interpolate both z and y to obtain a gradual transformation from one face to another. In (b) we take
two real images, reconstruct them and swap the attribute information y between them.

6 Conclusions

We introduce an encoder in a conditional setting within the GAN framework, a model which we call
Invertible Conditional GANs (IcGANs). It solves the problem of GANs lacking the ability to infer
real samples to a latent representation z, while also allowing to explicitly control complex attributes
of generated samples with conditional information y. We also refine the performance of cGANS
by testing the optimal position in which the conditional information y is inserted in the model. We
have found that for the generator, y should be added at the input level, whereas the discriminator
works best when y is at the first layer. Additionally, we evaluate several ways to training an encoder.
Training two independent encoders – one for encoding z and another for encoding y – has proven to
be the best option in our experiments. The results obtained with a complex face dataset, CelebA, are
satisfactory and promising.
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Optimization-Based GAN Inversion

1. Existing optimization-based GAN inversion methods typically reconstruct a target image

by optimizing the latent vector

z∗ = argminz ℓ(x,G (z, θ))

where x is the target image and G is a GAN generator parameterized by θ.

2. It is critical to

choose the optimizer since a good optimizer helps alleviate the local minima problem and

the initialization of latent code, because the objective function is not convex.

3. The optimization-based methods typically require an expensive iterative process in terms of

both memory and runtime, as they have to be applied to each latent code independently.
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Image2StyleGAN

1. These models need to measure the similarity between the input image and the embedded

image during optimization.

2. Image2StyleGAN19 employed a loss function that is a weighted combination of the

VGG-16 perceptual loss (Abdal, Qin, and Wonka 2019).

z∗ = argminz ℓpercept(x,G (z, θ)) +
λmse

N
∥x− G (z, θ)∥2

ℓpercept(x,G (z, θ)) =
4∑

j=1

λj

Nj
∥Fj(x1)− Fj(x2)∥2

where N is the target image and G is the number of scalers in the image, i.e.

N = n × n × 3 and Fj is the feature output of VGG-16 layers.
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Image2StyleGAN Results

1. First column: original image (1024× 1024).

2. Second column: embedded image with the perceptual loss applied to resized images of

256× 256 resolution.

3. Third column: embedded image with the perceptual loss applied to the images at the

original 1024× 1024 resolution.

Figure 12: First column: original image (1024 ⇥ 1024).
Second column: embedded image with the perceptual loss
applied to resized images of 256 ⇥ 256 resolution. Third
column: embedded image with the perceptual loss applied
to the images at the original 1024⇥ 1024 resolution.

7. Additional Materials on Embedding

Dataset In order to test our embedding algorithm, we col-
lect a small dataset of 25 images in five different categories:
human faces, cats, dogs, cars and paintings (Figure 17).

Additional Embedding Results To further support our
findings about the initial latent code in the main paper, we
show more results in Figure 13. It can be observed that:
for face images, initializing the optimization with the mean
face latent code works better; while for non-face images, us-
ing the latent codes randomly sampled from a multivariate
uniform distribution is a better option.

Quantitative Results on Defective Image Embedding
Table 3 shows the corresponding quantitative results on de-
fective image embedding (Figure 3 in the main paper). The
results show that compared to non-defective faces, the em-
bedded images of defective faces are farther from the mean
face. This reaffirms that the valid faces form a cluster
around the mean face.

Inherent Circular Artifacts of StyleGAN Interestingly,
we observed that the StyleGAN model trained on the FFHQ

Defect L(⇥105) kw⇤ � w̄k
non-defective 0.204 29.19
Eyes 0.271 34.90
Nose 0.311 39.20
Mouth 0.301 37.04
Eyes and Mouth 0.233 39.62
Eyes, Nose and Mouth 0.285 37.59

Table 3: Quantitative results on defective image embedding
(Figure 3 in the main paper). L is the loss after optimization.
kw⇤ � w̄k is the distance between the latent codes w⇤ and
w̄ of the average face.

dataset (officially released [15, 33]) inherently creates cir-
cular artifacts in the generated images, which are also ob-
servable in our embedding results (Figure 21). These arti-
facts are thus independent of our embedding algorithm and
may be resolved by employing better pretrained models in
the future.

Limitation of the ImageNet-based Perceptual loss All
existing perceptual losses utilize the classifiers trained on
the ImageNet dataset (e.g. VGG-16, VGG-19), which are
restricted to the resolution of 224⇥224. While in our paper,
we aim to embed images of high resolution (1024 ⇥ 1024)
that are much larger than that of ImageNet images. Such
inconsistency in the resolution may disable the learned im-
age filters as they are scale-dependent. To this end, we fol-
low the common practice [13, 19] and use a simple resizing
trick to compute the perceptual loss on resized images of
256 ⇥ 256 resolution. As Figure 12 shows, the embedding
results with the resizing trick outperform the ones at the
original resolution. However, small details are lost during
the resizing, which can slightly smoothen the embedding re-
sults. We expect to get better results with future perceptual
losses that work on higher resolutions.

StyleGANs trained on Other Datasets To support our
insights on the learned distribution, we further tested our
embedding algorithm on the StyleGANs trained on three
more datasets: the LSUN-Car (512 ⇥ 384), LSUN-Cat
(256⇥256) and LSUN-Bedroom (256⇥256) datasets. The
embedding results are shown in Figure 18. It can be ob-
served that the quality of the embedding is poor compared
to that of the StyleGAN trained on the FFHQ dataset. The
linear interpolation (image morphing) results of LSUN-Cat,
LSUN-Car, and LSUN-Bedroom StyleGANs are shown in
Figure 19 (a), (b) and (c) respectively. Interestingly, we
observed that linear interpolation fails on the LSUN-Cat
and LSUN-Car StyleGANs. Recall that the FFHQ human
face dataset is of very high quality in terms of scale, align-
ment, color, poses etc., we believe that the low quality of
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Image2StyleGAN Results

1. The results using different initialization of network weights.

(a) (b) (c) (d) (e) (f) (g)

Figure 14: Additional results on the justification of latent space choice.(a) Original images. Embedding results into the
original space W : (b) using random weights in the network layers; (c) with w̄ initialization; (d) with random initialization.
Embedding results into the W+ space: (e) using random weights in the network layers; (f) with w̄ initialization; (g) with
random initialization.

the LSUN datasets is the source of such failure. In other
words, the quality of the data distribution is one of the key
components to learn a meaningful model distribution.

Additional Results on the Justification of Latent Space
Choice Figure 14 shows additional results (cat, dog, car)
on the justification of our choice of latent space W+. Sim-
ilar to the main paper, we can observe that: (i) embedding
into W directly does not give reasonable results; (ii) the
learned network weights is important to good embeddings.

Clustering or Scattering? To support our insight that
only face images form a cluster in the latent space, we com-
pute the L2 distances between the embeddings of all pairs
of test images (Figure 20). It can be observed that the dis-
tances between the faces are relatively smaller than those of
other classes, which justifies that they are close to each other
in the W+ space and form a cluster. For images in other
classes, especially the paintings, the pairwise distances are
much higher. This implies that they are scattered in the la-
tent space.

Justification of Loss Function Choice Figure 22 vali-
dates the algorithmic choice of the loss function used in the
main paper. It can be observed that (i) matching the image
features at multiple layers of the VGG-16 network works
better than at a single layer; (ii) the combination of pixel-
wise MSE loss and perceptual loss works the best.

Influence of Noise Channels Figure 16 shows that
restarting the embedding with a different noise leads to sim-
ilar results. In addition, we observed significantly worse
quality when resampling the noise during the embedding
(at each update step). To this end, we kept the noise chan-
nel constant during the embedding for all our experiments.

8. Additional Results on Applications
Figure 15 shows additional results of the image morph-

ing. Figure 23 shows the complete table of the style transfer
results between different classes. The results support our in-
sight that the multi-class embedding works by using an un-
derlying human face structure (encoded in the first couple of
layers) and painting powerful styles onto it (encoded in the
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1. Additional morphing results between two embedded images (left-most and right-most).

Figure 15: Additional morphing results between two embedded images (the left-most and right-most ones). 75 / 84



Hybrid GAN Inversion

1. The hybrid methods exploit the advantages of both approaches discussed above.

2. Zhu et al. proposed a framework that first predicts z of a given real photo x by training a

separate encoder E (x, θE ) (Zhu, Krähenbühl, et al. 2016).

3. Then they used the obtained x as the initialization for optimization.

4. The learned predictive model serves as a fast bottom-up initialization for the nonconvex

optimization problem.
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Hybrid GAN Inversion

1. Zhu et al. used the following framework (Zhu, Krähenbühl, et al. 2016).

At first project an original photo onto a low-dimensional latent vector representation.

Then regenerating it using GAN.

Next, modify the color and shape of the generated image using various brush tools.

Finally, apply the same amount of geometric and color changes to the original photo to

achieve the final result.2 Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, Alexei A. Efros

77 / 84



Hybrid GAN Inversion Results

4 Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, Alexei A. Efros
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Hybrid GAN Inversion Results

Generative Visual Manipulation on the Natural Image Manifold 7

Reconstruction 
via Optimization

Reconstruction 
via Network

Reconstruction 
via Hybrid Method

Original photos

0.3390.190 0.382 0.302 0.2510.198 0.482 0.270 0.248 0.263

0.2490.164 0.370 0.279 0.3500.165 0.437 0.255 0.178 0.227

0.2040.141 0.298 0.218 0.1600.133 0.318 0.185 0.183 0.190

Fig. 3. Projecting real photos onto the image manifold using GAN. Top row: origi-
nal photos (from handbag dataset); 2nd row: reconstruction using optimization-based
method; 3rd row: reconstruction via learned deep encoder P ; bottom row: reconstruc-
tion using the hybrid method (ours). We show the reconstruction loss below each image.

We update the initial projection x0 by simultaneously matching the user inten-
tions while staying on the manifold, close to the original image x0.

Each editing operation is formulated as a constraint fg(x) = vg on a local
part of the output image x. The editing operations g include color, shape and
warping constraints, and are further described in Section 5.1. Given an initial
projection x0, we find a new image x 2 M close to x0 trying to satisfy as many
constraints as possible

x⇤ = arg min
x2M

nX

g

kfg(x) � vgk2

| {z }
data term

+�s · S(x, x0)| {z }
manifold

smoothness

o
, (4)

where the data term measures deviation from the constraint and the smoothness
term enforces moving in small steps on the manifold, so that the image content
is not altered too much. We set �s = 5 in our experiments.

The above equation simplifies to the following on the approximate GAN
manifold M̃:

z⇤ = arg min
z2Z

nX

g

kfg(G(z)) � vgk2

| {z }
data term

+�s · kz � z0k2

| {z }
manifold

smoothness

+ED

o
. (5)

Here the last term ED = �D · log(1 � D(G(z))) optionally captures the visual
realism of the generated output as judged by the GAN discriminator D. This
constraint further pushes the image towards the manifold of natural images and
slightly improves the visual quality of the result. By default, we turn o↵ this
term to increase frame rates.

Gradient descent update: For most constraints Equation 5 is non-convex.
We solve it using gradient descent, which allows us to provide the user with
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Properties of GAN Inversion Methods

Properties of GAN Inversion methods (Xia et al. 2023).

u!E ¼ argmin
uE

X

n

LðGðEðxn; uEÞÞ; xnÞ; (2)

where xn denotes the nth image in the dataset. The objective
in (2) is reminiscent of an autoencoder pipeline, with an
encoder E and a decoderG. The decoder G is fixed through-
out the training. Aside from accurate reconstruction, a good
encoder for GAN inversion should have the following feats:
1) lightweight; 2) data-efficiency; 3) supporting high-resolu-
tion images (see Section 4.3.1); and 4) generalizability to
arbitrary images (see Section 4.3.4).

One earlier learning-based GAN inversion method is
proposed by Perarnau et al. [46]. Given a conditional GAN
(cGAN) model, a real image x is encoded by a latent code z
and an attribute vector y, a modified image x0 is synthesized
by changing y. This approach consists of training an
encoder E with a trained conditional GAN (cGAN). Differ-
ent from Zhu et al. [20], this encoder E is composed of two
modules: Ez, which encodes an image to z, and Ey, which
encodes an image to y. To train Ez, this method uses the
generator to create a dataset of generated images x0 and
latent vectors z, minimizes a squared reconstruction loss Lez

between z and EzðGðz; y0ÞÞ and improves Ey by directly
training with ky% EyðxÞk22. Ey is initially trained by using
generated images x0 and their conditional information y0.

Due to the prevalence of StyleGANs [13], [14], [70], [71],
most recent learning-based methods design an encoder for

StyleGANs. Richardson et al. [28] propose the MAP2STYLE
modules to learn styles from the corresponding feature
map, where 18 single-layer latent codes are predicted sepa-
rately. Instead of using 18 modules to learn styles for Style-
GANs, Wei et al. [29] propose a simple and efficient head,
which just consists of an average pooling layer and a fully
connected layer. Given three different semantic levels of fea-
tures obtained by the feature pyramid network (FPN) [95],
these three heads produce w15; . . . ;w18, w10; . . . ;w14, and
w1; . . . ;w9 from the shallow, medium, and deep features,
respectively. In [59], Tov et al. analyze the trade-offs
between distortion, perceptual quality, and editability
within the StyleGAN latent space. An encoder is used to
control the trade-offs and facilitate downstream image edit-
ing. To improve inversion accuracy, Alaluf et al. [30] intro-
duce an iterative refinement mechanism for the encoder.
Instead of directly predicting the latent code of a given real
image in a forward pass, at step t, the encoder operates on
an extended input obtained by concatenating the given
image x with the predicted image: Dt ¼ Eðx; ytÞ, where yt ¼
GðwtÞ. The latent code at step tþ 1 is then updated as
wtþ1 ¼ Dt þwt. The initialized values of w0 and y0 are set
as the average latent code and its corresponding image,
respectively.

Although some methods [31], [32], [33], [96] use additive
encoder networks to learn the inverse mapping of GANs,
we do not categorize them as GAN inversion since their

TABLE 1
Properties of GAN Inversion Methods

Method Publication Type S.-A. L.-W. S.-R Space GANModel Dataset Keywords

Zhu et al. [20] ECCV’16 H. 64 Z [38] [39], [40], [41] inversion for GANs
Creswell et al. [42], [43] NeurIPS’16 O. 128 Z [38], [44] [39], [45] first using the term inversion
Perarnau et al. [46] NeurIPS’16 L. 64 Z [38] [45], [47] inversion for conditional GAN
GANPaint [15] TOG’19 H. ✓ ✓ 256 Z [11] [41] learn an image-specific generator
GANSeeing [23] ICCV’19 H. ✓ ✓ 256 Z,W [11], [13], [44] [41] visualization of mode collapse
Image2StyleGAN [21] ICCV’19 O. ✓ 1024 W [13] [13] first inversion for StyleGAN
Image2StyleGAN++ [22] CVPR’20 O. ✓ ✓ 1024 Wþ [11], [13] [11], [13]
mGANPrior [48] CVPR’20 O. ✓ ✓ 256 Z [11], [13] [11], [13], [41] multi-code GAN prior
Editing in Style [49] CVPR’20 O. ✓ 1024 W [11], [13], [14] [13], [41]
YLG [50] CVPR’20 O. 128 Z [51] [52] attention
Huh et al. [24] ECCV’20 O. ✓ 1024 Z [12], [14] [13], [41], [52] class-conditional
IDInvert [19] ECCV’20 H. ✓ ✓ 256 Wþ [13] [13], [41] in-domain
SG-Distillation [53] ECCV’20 O. ✓ ✓ 1024 Wþ [14] [13]
MimicGAN [54] IJCV’20 O. 64 Z [45] [38] for corrupted images
Chai et al. [55] ICLR’21 L. ✓ ✓ 1024 Z,Wþ [11], [14] [11], [13], [41] data augmentation
pSp [28] CVPR’21 L. ✓ ✓ 1024 Wþ [14] [11] map2style module
StyleSpace [56] CVPR’21 O. ✓ ✓ 1024 S [14] [13], [41] S-space
GH-Feat [57] CVPR’21 L. ✓ ✓ 256 S [13] [13], [41], [47] generative hierarchical feature
GANEnsembling [58] CVPR’21 H. ✓ ✓ 1024 Wþ [14] [13], [41]
e4e [59] TOG’21 L. ✓ ✓ 1024 Wþ [14] [11], [13], [41] encoder for editing
Xu et al. [60] ICCV’21 O. ✓ ✓ 1024 Wþ [13] [13], [61] for consecutive images
ReStyle [30] ICCV’21 L. ✓ ✓ 1024 Wþ [14] [11], [13], [41], [62] iterative refinement
BDInvert [63] ICCV’21 O. ✓ ✓ 1024 F=Wþ [11], [14] [11], [13], [41] out-of-range, F=Wþ-space
Zhu et al. [64] arxiv’21 O. ✓ ✓ 1024 P [13], [14] [13] P and Pþspace
Wei et al. [29] arxiv’21 L. ✓ ✓ 1024 Wþ [14] [11], [13] efficient encoder architecture
PTI [65] arxiv’21 H. ✓ 1024 W [14] [11], [13] tune G around a pivot latent code
HyperStyle [66] CVPR’22 H. ✓ 1024 W [14] [11], [13], [67] learn to optimize the generator
HFGI [68] CVPR’22 L. ✓ ✓ 1024 Wþ [13], [14] [11], [13], [67]
HyperInverter [69] CVPR’22 L. ✓ 1024 W [14] [11], [13], [41] two-phase inversion

Type includes Learning-based (L.), Optimization-based (O.), and Hybrid (H.) GAN inversion. S.-A., L.-W., and S.-R denote Semantic Awareness, Layerwise,
and Supported Resolution, respectively. GAN model and Dataset indicate which GAN models are trained on which dataset that a method is inverting, which
can be found in Section 3.1.
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