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Introduction



Density estimation

1. Density estimation is the problem of reconstructing the probability density function using a

set of given data points.

2. In density estimation, we observe X1, . . . ,Xn ∼ P and we want to recover the underlying

probability density function generating this dataset.

3. P is the underlying population CDF and p as it pdf .

4. We assume that X1, . . . ,Xn are identically independently distributed random variables.

Hence,

p(x1, . . . , xn) =
n∏

k=1

p(xk)

5. Density can be estimated using two approaches:

Parametric approach

Non-parametric approach
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Parametric density estimation approach



Parametric density estimation approach

1. Assume that we can approximate the probability density function p using density function

pθ(x).

2. Here, θ is parameters of density function pθ(x).

3. There are many approaches for estimating θ such as

maximum likelihood method (ML)

maximum a posteriori probability (MAP)

method of moments

Bayesian estimation method

4. Let Xi be a one-dimensional real valued random variable.

5. Let be the target pdf, where θ = {µ, σ2} is its parameters.
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Parametric density estimation approach

1. Let pθ(x) = N
(
µ, σ2

)
. Then θ =

{
µ, σ2

}
.

2. The likelihood equals

L(θ) = p(x1, . . . , xn; θ) =
n∏

k=1

p(xk ; θ)

LL (θ) = ln L(θ) =
n∑

k=1

p(xk ; θ)

3. By differentiating LL (θ) with respect to θ and setting to zero, we obtain

µ̂n =
1

n

n∑

k=1

xk

σ̂2
n =

1

n

n∑

k=1

(xk − µ̂n)
2

4. Then the resulting density function is

p̂n(x) =
1√
2πσ̂2

e−
1
2 (

x−µ̂n
σ̂n

)
2
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Evaluating estimators

Definition (Bias of an estimator)

Let θ̂ be a point estimator for θ. The bias of point estimator θ̂ is defined by

Bias (θ̂) = E
[
θ̂
]
− θ.

Definition (Unbiased estimator)

Let θ̂ be a point estimator for θ. We say that the point estimator θ̂ is an unbiased estimator

of θ if for all values of θ, we have

Bias (θ̂) = 0.

Example (Unbiased estimator)

Let µ̂n = 1
n

∑n
k=1 Xk , then µ̂n is an unbiased estimator.

Bias (µ̂n) = E[µ̂n]− µ = E

[
1

n

n∑

k=1

Xk

]
− µ

=
1

n

n∑

k=1

E[Xk ]− µ = µ− µ = 0.
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Evaluating estimators

Example (Biased estimator)

Let σ̂2
n = 1

n

∑n
k=1(xk − µ̂n)

2, then σ̂2
n is a biased estimator.

Bias (σ̂2
n) = E

[
1

n

n∑

k=1

(xk − µ̂n)
2

]
− σ2

=
1

n

n∑

k=1

E


(xk −

1

n

n∑

j=1

xj)
2


− σ2

=
1

n

n∑

k=1

E


x2k − 2

n
xk

n∑

j=1

xj +
1

n2

n∑

k=1

xk

n∑

j=1

xj


− σ2

=
1

n

n∑

k=1


n − 2

n
E
[
x2k
]
− 2

n

n∑

j ̸=k

E[xkxj ] +
1

n2

n∑

j=1

∑

k ̸=j

E[xkxj ] +
1

n2

n∑

j=1

E
[
x2j
]

− σ2

=
1

n

n∑

k=1

[
n − 2

n

(
µ2 + σ2

)
− 2(n − 1)

n
µ2 +

n(n − 1)

n2
µ2 +

1

n

(
µ2 + σ2

)]
− σ2

=
1

n

n∑

k=1

[(
n − 1

n

)
σ2

]
− σ2 =

(
n − 1

n

)
σ2 − σ2 ̸= 0.
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Evaluating estimators

Definition (Mean squared error of an estimator)

The mean squared error (MSE) of a point estimator θ̂, shown by MSE (θ̂), is defined as

MSE (θ̂) = E
[(
θ̂ − θ

)2]
.

Example

Let X1, . . . ,Xn be a random sample from a distribution with mean E[Xi ] = θ and variance

var[Xi ] = σ2. Consider two estimators for θ

θ̂1 = X1 θ̂2 =
1

n

n∑

k=1

Xk .

These two estimators are both unbiased. Hence, we study their MSE:

MSE (θ̂1) = E
[(
θ̂1 − θ

)2]
= E

[
(X1 − E[X1])

2
]
= var[X1] = σ2.

MSE (θ̂2) = E
[(
θ̂2 − θ

)2]
= E



(
1

n

n∑

k=1

Xk − θ

)2

 =

σ2

n
.

Thus MSE (θ̂1) > MSE (θ̂2). Hence, θ̂2 is better.
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Evaluating estimators

Definition (Consistency of an estimator)

Let θ̂1, θ̂2, . . . , θ̂n, . . . be a sequence of point estimators of θ. We say θ̂n is a consistent

estimator of θ, if

lim
n→∞

p(|θ̂n − θ| ≥ ϵ) = 0, for all ϵ > 0.

Example (Consistency of sample average)

Let X1, . . . ,Xn be a random sample from a distribution with mean E[Xi ] = θ and variance

var[Xi ] = σ2. Consider the following estimator for θ

θ̂n =
1

n

n∑

k=1

Xk .

We have found that MSE (θ̂n) =
σ2

n . Thus,

lim
n→∞

MSE (θ̂n) → 0.

Hence, this estimator is consistent.

8 / 65



Evaluating estimators

Theorem

Let θ̂ is a point estimator for θ. Then MSE (θ̂) = var[θ̂] + Bias (θ̂)
2

Theorem (Consistency of an estimator)

Let θ̂1, θ̂2, . . . be a sequence of point estimators of θ. If limn→∞ MSE (θ̂n) = 0, then θ̂n is a

consistent estimator of θ.

Proof.

We can write

p(|θ̂n − θ| ≥ ϵ) = p(|θ̂n − θ|2 ≥ ϵ2)

≤
E
[(
θ̂n − θ

)2]

ϵ2
byMarkov ′sinequality

=
MSE (θ̂n)

ϵ2
,

which goes to 0 as n → ∞ by the assumption.
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Evaluating estimators

Definition (Convergence in Probability)

A sequence of random variables Z1,Z2, . . . converges in probability to a random variable Z,

shown by Zn
p→ Z, if

lim
n→∞

p(|Zn − Z| ≥ ϵ) = 0, for all ϵ > 0.

This implies that the distribution is concentrating at the targeting point.

Lemma

Let θ̂ be an estimator of θ. If Bias (θ̂) → 0 and var[θ̂] → 0, then θ̂
p→ θ, i.e. θ̂ is a

consistent estimator of θ.

Definition (Convergence in Distribution)

Let F1,F2, . . . be the corresponding CDFs of Z1,Z2, . . .. For a random variable Z with CDF

F , we say Zn converges in distribution to a random variable Z, shown by Zn
d→ Z, if

lim
n→∞

Fn(x) = F (x),

This implies that Fn converge to the CDF of a fixed random variable.

10 / 65



Stochastic order notations

Definition

For a sequence of numbers an (indexed by n), we write

1. an = o(1) if limn→∞ an → 0. For another sequence bn, we write an = o(bn) if
an
bn

= o(1).

2. an = O(1) if for all large n, there exists a constant C such that |an| < C . For another

sequence bn, we write an = O(bn) if
an
bn

= O(1).

The Op and op are similar notations to O and o but are designed for random numbers.

Definition

For a sequence of random variables Xn, we write

1. Xn = op(1) if for any ϵ > 0,

lim
n→∞

p(|Xn| > ϵ) → 0

Namely, p(|Xn| > ϵ) = op(1) for any ϵ > 0. Let an be a nonrandom sequence, we write

Xn = op(an) if
Xn

an
= op(1).

2. Xn = Op(1) if for any ϵ > 0, there exists a constant C such that

p(|Xn| > C ) < ϵ.

We write Xn = Op(an) if
Xn

an
= Op(1).
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Analysis of parametric density estimation approach

Is the parametric approach a good one? We analyze the quality of estimation in the

parametric approach for Gaussian distribution.

1. We quantify p̂n(x)− p(x).

2. Since the sample mean µ̂
p→ µ = E[X] and the sample variance σ̂2 p→ σ2 = var[X], we

define another density function

p(x) =
1√
2πσ2

e−
1
2 (

x−µn
σn

)
2

3. The estimated density function is

p̂n(x) =
1√
2πσ̂2

e−
1
2 (

x−µ̂n
σ̂n

)
2
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Analysis of parametric density estimation approach

1. Using p(x), we have

p̂n(x)− p(x) = p̂n(x)− p(x) + p(x)− p(x)

2. The first difference p̂n(x)− p(x) is something that converges to 0 because the sample

mean and variance converges to their population counterparts. Namely, we have

p̂n(x)
p→ p(x).

3. However, the second difference pn(x)− p(x) never goes to 0 unless the true pdf is

Gaussian.

pn(x) =
1√
2πσ̂2

e−
1
2 (

x−µ̂n
σ̂n

)
2

4. We study the convergence rate of p̂n(x)− p(x) as

p̂n(x)− p(x) = Op

(
1√
n

)
.

5. This will help us understand when a parametric approach may be better than a

nonparametric approach.
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Gaussian mixture model

1. Let the parametric model be

p̂n(x) =
K∑

k=1

πkN
(
µk , σ

2
k

)

K∑

k=1

πk = 1

2. Then, we compute parameters θ =
{
µ1, . . . , µK , σ

2
1 , . . . , σ

2
K , π1, . . . , πK

}
based on training

data.

3. We use EM algorithm to estimate the parameters.

4. The convergence rate of p̂n(x)− p(x) equals to

p̂n(x)− p(x) = Op

(
1√
n

)
.
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Nonparametric density estimation approach



Histogram

1. For simplicity, we assume that Xi ∈ [0, 1]. So p(x) > 0 in interval [0, 1].

2. We also assume that p(x) > 0 is smooth and | p(x)′| ≤ L for all x .

3. In histogram we partition interval [0, 1] into M bins (Bk) of equal lengths as

Bk =

[
k − 1

M
,
k

M

]

4. Then, we count the number of samples in a bin as density estimate. Hence, then for a

given point x ∈ Bl , the density estimator from the histogram will be

p̂n(x) =
|Bl |
n

× 1

len (Bl)
=

M

n

n∑

i=1

I[Xi ∈ Bl ]

5. Now we study the bias of the histogram density estimator (Drive the following bounds.)

Bias ( p̂n(x)) ≤
L

M

var[ p̂n(x)] = M
p(x∗)
n

+
( p(x∗))2

n

MSE ( p̂n(x)) ≤
L

M
+M

p(x∗)
n

+
( p(x∗))2

n
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Histogram

1. To balance the bias and variance, we choose M that minimizes the MSE, which leads to

Mopt =

(
n × L2

p(x∗)

)

Lecture 6: Density Estimation: Histogram and Kernel Density Estimator 6-3

6.2 Kernel Density Estimator

Here we will talk about another approach–the kernel density estimator (KDE; sometimes called kernel density
estimation). The KDE is one of the most famous method for density estimation. The follow picture shows
the KDE and the histogram of the faithful dataset in R. The blue curve is the density curve estimated by
the KDE.
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Here is the formal definition of the KDE. The KDE is a function

bpn(x) =
1

nh

nX

i=1

K

✓
Xi � x

h

◆
, (6.5)

where K(x) is called the kernel function that is generally a smooth, symmetric function such as a Gaussian
and h > 0 is called the smoothing bandwidth that controls the amount of smoothing. Basically, the KDE
smoothes each data point Xi into a small density bumps and then sum all these small bumps together to
obtain the final density estimate. The following is an example of the KDE and each small bump created by
it:
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Kernel density estimator

1. The KDE is a function of

p̂n(x) =
1

nh

n∑

i=1

K

(
Xi − x

h

)

2. where K (x) is called the kernel function that is generally a smooth, symmetric function

such as a Gaussian where

K(x) is symmetric.

∫
K(x)dx = 1

lim|x|→∞ K(x) = 0

3. h > 0 is called the smoothing bandwidth that controls the amount of smoothing.

6-4 Lecture 6: Density Estimation: Histogram and Kernel Density Estimator

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.5

1.0
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In the above picture, there are 6 data points located at where the black vertical segments indicate: 0.1, 0.2, 0.5, 0.7, 0.8, 0.15.
The KDE first smooth each data point into a purple density bump and then sum them up to obtain the final
density estimate–the brown density curve.

6.3 Bandwidth and Kernel Functions

The smoothing bandwidth h plays a key role in the quality of KDE. Here is an example of applying di↵erent
h to the faithful dataset:

40 50 60 70 80 90 100

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

faithful$waiting

De
nsi

ty

h=1
h=3
h=10

Clearly, we see that when h is too small (the green curve), there are many wiggly structures on our density
curve. This is a signature of undersmoothing–the amount of smoothing is too small so that some structures
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Kernel density estimator

Lecture 6: Density Estimation: Histogram and Kernel Density Estimator 6-5

identified by our approach might be just caused by randomness. On the other hand, when h is too large (the
brown curve), we see that the two bumps are smoothed out. This situation is called oversmoothing–some
important structures are obscured by the huge amount of smoothing.

How about the choice of kernel function? A kernel function generally has two features:

1. K(x) is symmetric.

2.
R

K(x)dx = 1.

3. limx!�1 K(x) = limx!+1 K(x) = 0.

In particular, the second requirement is needed to guarantee that the KDE bpn(x) is a probability density
function. Note that most kernel functions are positive; however, kernel functions could be negative 1.

In theory, the kernel function does not play a key role (later we will see this). But sometimes in practice,
they do show some di↵erence in the density estimator. In what follows, we consider three most common
kernel functions and apply them to the faithful dataset:
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Epanechnikov Kernel
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The top row displays the three kernel functions and the bottom row shows the corresponding density esti-

1Some special types of kernel functions, known as the higher order kernel functions, will take negative value at some regions.
These higher order kernel functions, though very counter intuitive, might have a smaller bias than the usual kernel functions.
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Kernel density estimator

1. We first analyze the bias. The bias of KDE is

Bias ( p̂n(x0)) =
1

2
h2 p′′(x0)µK + o(h2) µK =

∫
y2K (y)dy

2. This means that when we allow h → 0, the bias is shrinking at a rate O
(
h2
)
.

3. The upper bound of variance of KDE is

var[ p̂n(x0)] =
1

nh
p(x0)σ

2
K + o

(
1

nh

)
σ2
K =

∫
K 2(y)dy

4. Now putting both bias and variance together, we obtain the MSE of the KDE:

MSE ( p̂n(x0)) = O
(
h4
)
+ O

(
1

nh

)

5. The optimal bandwidth equals to

hopt = C1n
− 1

5

6. And this choice of smoothing bandwidth leads to a MSE at rate

MSE ( p̂n(x0)) = O
(
n−

1
5

)
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Structured density estimation approach



The number of parameters of density estimators

1. Let X = {x1, . . . , xd} be an d−dimensional random variable where xi ∈ {0, 1}.

2. How many parameters do we need to estimate the density function?

Sample xd xd−1 . . . x2 x1

1 0 0 . . . 0 0

2 0 0 . . . 0 1

3 0 0 . . . 1 0

4 0 0 . . . 1 1

...

2d 1 1 . . . 1 1

3. How can we decrease the number of parameters?
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How to find the structure of density functions?

1. One way is to use probabilistic graphical models. A (probabilistic) graphical model defines

a family of probability distributions over a set of random variables, by means of a graph.

2. These models offer several useful properties:

They provide a simple way to visualize the structure of a probabilistic model and can be used

to design and motivate new models.

Insights into the properties of the model, including conditional independence properties, can

be obtained by inspection of the graph.

Complex computations, required to perform inference and learning in sophisticated models,

can be expressed in terms of graphical manipulations, in which underlying mathematical

expressions are carried along implicitly.

3. A graph G = (V ,E ) comprises nodes (vertices) V connected by links (edges or arcs) E .

Each node represents a random variable (or group of random variables).

Each link express probabilistic relationships between these variables.

The graph captures joint distribution over random variables and can be decomposed into a

product of factors each depending only on a subset of the variables.
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Probabilistic graphical model

1. Some types of probabilistic graphical models:

Bayesian networks,

Markov random fields,

Factor graphs

2. Important problems probabilistic graphical models:

Structure learning,

Constraint-based approach

Score-based approach

Hybrid-approach

Parameter learning

Probabilistic inference : Compute marginal probabilities p(x | E)
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Structured density function

Sprinkler

Grass wet

Rain

Sprinkler

Rain T F

F 0.4 0.6

T 0.01 0.99

Sprinkler

T F

0.2 0.8

Grass wet

Sprinkler rain T F

F F 0.4 0.6

F T 0.01 0.99

T F 0.01 0.99

T T 0.01 0.99
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Structured density estimation approach

Bayesian networks



Bayesian networks

1. Let p(a, b, c) be joint distribution over three variables a, b, and c .

2. By application of the product rule of probability, we can write the joint distribution as

p(a, b, c) = p(c | a, b) p(a, b)
p(a, b, c) = p(c | a, b) p(b | a) p(a)

3. This decomposition holds for any choice of the joint distribution.

a

b c

4. An interesting point: p(a, b, c) symmetrical with respect to a, b, and c , whereas

p(c | a, b) p(b | a) p(a) is not.

5. Generalization to K variables:

p(x1, . . . , xK ) = p(xK | x1, . . . , xK−1) . . . p(x2 | x1)

24 / 65



Bayesian networks

1. Consider the following Bayesian networks

x1

x2 x3

x4 x5

x6 x7

2. The joint distribution of all x1, . . . , x7 variables is

p(x1, . . . , x7) = p(x1) p(x2) p(x3) p(x4 | x1, x2, x3) p(x5 | x1, x3) p(x6 | x4) p(x7 | x4, x5).

3. For a graph with K nodes, the joint distribution is

p(x1, . . . , xK ) =
K∏

k=1

p(xk | pak).
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Conditional independence

1. An important concept for probability distributions over multiple variables is conditional

independence.

2. For three variables a, b, c , and suppose p(a | b, c) does not depend on the value of b.

p(a | b, c) = p(a | c)

3. We say that a is conditionally independent of b given c .

p(a, b | c) = p(a | b, c) p(b | c)
= p(a | c) p(b | c).

4. We sometimes use a shorthand notation for conditional independence a ⊥⊥ b | c as.

c

a b

p(a, b, c) = p(a | c) p(b | c) p(c)

p(a, b | c) = p(a, b, c)

p(c)

= p(a | c) p(b | c).

So we obtain the conditional independence

property a ⊥⊥ b | c .
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Polynomial regression

1. Consider the regression model in which

set of n iid observations x = (x1, . . . , xn) and

with corresponding target values t = (t1, . . . , tn),

where tk is actual value plus a Gaussian noise value with precision β.

2. Let y(x ,w) be the predicted function and the goal is to make predictions of target variable

t for new input x .

p(t | x ,w, β) = N
(
t | y(x ,w), β−1

)

3. Using training data {x, t}, we can determine w and β by MLE.

p(t | x,w, β) =
K∏

k=1

N
(
tk | y(xk ,w), β−1

)
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Polynomial regression

1. Let introduce a prior distribution over parameters w as

p(w | α) = N
(
w | 0, α−1I

)

where α is the precision of the distribution.

2. The posterior distribution for w can be estimated using MAP as

p(w | x, t, α, β) ∝ p(t | x,w, α, β) p(w | α).

3. In Bayesian regression model, for a new point x , we need to predict value t as

p(t | x , x, t) =
∫

p(t | x ,w) p(w | x, t)dw .

where we assume that parameters α and β are fixed and known in advance.

4. The random variables are parameters w and observed data t = (t1, . . . , tn).

5. In addition, this model contains input data x = (x1, . . . , xn) and parameters α and β.

28 / 65



Polynomial regression

1. By focusing only on random variables, the joint distribution is

p(t,w) = p(w)
n∏

k=1

p(tn | w).

2. The conditional distributions p(tn | w) (for n = 1, . . . , n) is

w

t1 t2 tn

3. The random variables in this model are t

the vector of coefficients w

the observed data t = (t1, . . . , tn).

4. Other parameters are not random variables

the input data x = (x1, . . . , xn)

the noise precision β and the hyper-parameter α.
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Polynomial regression

1. The joint distribution p(t,w) is

p(t,w) = p(w)
n∏

k=1

p(tn | w).

2. Sometimes it is helpful to make the parameters of a model, as well as its random

variables, explicit.

p(t,w | x, α, β) = p(w | α)
n∏

k=1

p(tn | w, xn, β).

3. We can represent it in graphical notations.

tk w

n

tkβ

xk

w

α

n
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Polynomial regression

1. Having observed values {tk} we can evaluate the posterior distribution of w

tkβ

xk

w

α

n

p(w | t) ∝ p(w)
n∏

k=1

p(tk | w)

2. Let new input x̂ is given and we wish to find the corresponding probability distribution for

t̂ conditioned on the observed data.

3. The joint distribution of all random variables conditioned on deterministic parameters

is

p(t̂, t,w | x̂ , x, α, β) =
[

n∏

k=1

p(tk | xk ,w, β)
]
p(w | α) p(tk | x̂ ,w, β)
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Polynomial regression

1. The joint distribution of all random variables conditioned on deterministic parameters is

p(t̂, t,w | x̂ , x, α, β) =
[

n∏

k=1

p(tk | xk ,w, β)
]
p(w | α) p(tk | x̂ ,w, β)

2. The corresponding graphical model is

tk

β

xk

w

t̂ x̂

α

n

p(t̂ | x̂ , x, α, β) =
∫

p(t̂, t,w | x̂ , x, α, β)dw

3. We are implicitly setting the random variables in t to the specific values observed in the

data set.
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Generative models

1. There are many situations in which we wish to draw samples from a given probability

distribution.

2. Let p(x1, . . . , xd) be the joint distribution over d variables.

3. The goal is to draw a sample (x1, . . . .xd) from the joint distribution.

4. To do this (suppose that the variables have been ordered such that there are no links from

any node to any lower numbered node),

4.1 Start with the lowest-numbered node and draw a sample from the distribution p(x1), which

we call x̂1.

4.2 For a node xn, draw a sample from the conditional distribution p(xn | pan)

4.3 Continue until the last variable is being sampled.

5. To obtain a sample from some marginal distribution corresponding to a subset of the

variables:

5.1 we simply take the sampled values for the required nodes and

5.2 ignore the sampled values for the remaining nodes.
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Generative models

1. Consider the following graphical model: Is it generative?

tkβ

xk

w

α

n

2. This model is not generative because there is no probability distribution associated

with the input variable x .

3. So it is not possible to generate synthetic data points from this model.

4. Can we make the above model generative?

5. We could make it generative by introducing a suitable prior distribution p(x), at the

expense of a more complex model.
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Inference

1. Consider the following graphical model.

y

x1 x2

x3 x4

x5 x6

2. How do you compute p(y | x5)?

3. The joint distribution p(y , x1, x2, x3, x4, x5, x6) equals to

p(y , x1, x2, x3, x4, x5, x6) = p(y) p(x1 | y) p(x2 | x1, y) p(x3 | x2, y)
p(x4 | x2, y) p(x5 | x4, y) p(x6 | x4, y)
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Variable Elimination

p(y | x5) ∝
∑

x1

∑

x2

∑

x3

∑

x4

∑

x6

p(y) p(x1 | y) p(x2 | x1, y) p(x3 | x2, y) p(x4 | x2, y) p(x5 | x4, y) p(x6 | x4, y)

=
∑

x1

∑

x2

∑

x4

p(y) p(x1 | y) p(x2 | x1, y) p(x4 | x2, y) p(x5 | x4, y)
∑

x3

p(x3 | x2, y)
∑

x6

p(x6 | x4, y)
︸ ︷︷ ︸

=1︸ ︷︷ ︸
=1

= p(y)
∑

x1

p(x1 | y)
∑

x2

p(x2 | x1, y)
∑

x4

p(x4 | x2, y) p(x5 | x4, y)
︸ ︷︷ ︸

m4(x2)

= p(y)
∑

x1

p(x1 | y)
∑

x2

p(x2 | x1, y)m4(x2)

︸ ︷︷ ︸
m2(x1)

= p(y)
∑

x1

p(x1 | y)m2(x1)

︸ ︷︷ ︸
m1

= p(y)m1.

The order of summations is important.
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Variable Elimination

Consider ordering X4,X1,X2,Y,X3.

p(x3 | x5) ∝
∑

y

p(y)
∑

x2

p(x3 | x2, y)
∑

x1

p(x2 | x1, y) p(x1 | y)
∑

x4

p(x4 | x2, y) p(x5 | x4, y)
︸ ︷︷ ︸

m4(x2,y)

=
∑

y

p(y)
∑

x2

p(x3 | x2, y)
∑

x1

p(x2 | x1, y) p(x1 | y)m4(x2, y)

︸ ︷︷ ︸
m1(x2,y)

=
∑

y

p(y)
∑

x2

p(x3 | x2, y)m1(x2, y)

︸ ︷︷ ︸
m2(y)

=
∑

y

p(y)m2(y)

︸ ︷︷ ︸
my

.
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Structured density estimation approach

Sum Product Networks



Sum Product Networks (SPN)

An SPN is a rooted directed acyclic graph that efficiently computes the marginals and modes

of a probabilistic graphical model (PGM) (Poon and Domingos 2011).

1. A SPN has two types of internal nodes: sum

nodes and product nodes.

2. The leaves of A SPN are x1, . . . , xn and

x̄1, . . . , x̄n.

3. Each edge (i , j) emanating from sum node i has

a weight wij ≥ 0.

4. The value of a product node is the product of

the value of its children.

5. The value of a sum node i is
∑

j∈Ch(i) wijvj ,

where Ch(j) are the children of node i and vj is

its value.

6. The value of a SPN is the value of the root after

a bottom up evaluation.

7. Layers of sum and product nodes usually

alternate.

Marginal Inference

• P(𝑋1= 1) ?

What is the output of the above network?
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Probabilistic Inference

SPN represents a joint distribution over a set of random variables. What is value of

p(x1 = 1, x2 = 0)?
Probabilistic inference

• An SPN represents 
a joint distribution 
over a set of 
variables

• P(𝑋1= 1, 𝑋2= 0) ?

39 / 65



Marginal Inference

SPN represents a joint distribution over a set of random variables. What is value of p(x1 = 1)?Marginal Inference

• P(𝑋1= 1) ?
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Conditional Inference

SPN represents a joint distribution over a set of random variables.

1. As an example consider

p(x1 = true | x2 = false) =
p(x1 = true, x2 = false)

p(x2 = false)

2. Hence any inference query can be answered in

two bottom-up passes of the network.

Marginal Inference

• P(𝑋1= 1) ?

The inference algorithm has linear time complexity with respect to the number of nodes in the

network.

A valid SPN encodes a hierarchical mixture distribution.

1. Sum nodes: hidden variables (mixture).

2. Product nodes: factorization (independence).
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Structure learning

We must specify the structure of SPN (structure Estimation or structure learning).

1. What is SPN for univariate distribution? → A univariate distribution is an SPN.

2. What is SPN for product of disjoint random variables? → A product of SPNs over disjoint

variables is an SPN.

3. What is SPN for a mixture model? → A weighted sum of SPNs over the same variables is

an SPN.

A Weighted Sum of SPNs 
over the Same Variables

Is an SPN.

X Y X Y

w1 w2
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Structure learning

1. In a structure learning, one alternates between

Data Clustering: sum nodes

Variable partitioning: product nodesStructure learning: LearnSPN

Cluster similar 
instances

Split variables on 
approximate 
independence

2. Some others use SVD decomposition (Adel, Balduzzi, and Ghodsi 2015).
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SPN parameter learning

1. Initialize the SPN using a dense valid SPN.

2. Learn the SPN weights using gradient descent or EM.

3. Add some penalty to the weights so that they tend to be zero.

4. Prune edges with zero weights at convergence.

Algorithm 1 LearnSPN
Input: Set D of instances over variablesX .
Output: An SPN with learned structure and parameters.
S ← GenerateDenseSPN(X)
InitializeWeights(S)
repeat
for all d ∈ D do
UpdateWeights(S, Inference(S, d))

end for
until convergence
S ← PruneZeroWeights(S)
return S

explicitly represent only the features, and require the sums
to be inefficiently computed by Gibbs sampling or oth-
erwise approximated. Convolutional networks [15] alter-
nate feature layers with pooling layers, where the pool-
ing operation is typically max or average, and the fea-
tures in each layer are over a subset of the input variables.
Convolutional networks are not probabilistic, and are usu-
ally viewed as a vision-specific architecture. SPNs can be
viewed as probabilistic, general-purpose convolutional net-
works, with average-pooling corresponding to marginal in-
ference and max-pooling corresponding to MPE inference.
Lee at al. [16] have proposed a probabilistic version of
max-pooling, but in their architecture there is no corre-
spondence between pooling and the sum or max operations
in probabilistic inference, as a result of which inference is
generally intractable. SPNs can also be viewed as a prob-
abilistic version of competitive learning [27] and sigma-pi
networks [25]. Like deep belief networks, SPNs can be
used for nonlinear dimensionality reduction [14], and al-
low objects to be reconstructed from the reduced represen-
tation (in the case of SPNs, a choice of mixture component
at each sum node).

Probabilistic context-free grammars and statistical parsing
[6] can be straightforwardly implemented as decomposable
SPNs, with non-terminal nodes corresponding to sums (or
maxes) and productions corresponding to products (logi-
cal conjunctions for standard PCFGs, and general products
for head-driven PCFGs). Learning an SPN then amounts
to directly learning a chart parser of bounded size. How-
ever, SPNs are more general, and can represent unrestricted
probabilistic grammars with bounded recursion. SPNs are
also well suited to implementing and learning grammatical
vision models (e.g., [10, 33]).

4 LEARNING SUM-PRODUCT
NETWORKS

The structure and parameters of an SPN can be learned
together by starting with a densely connected architecture
and learning the weights, as in multilayer perceptrons. Al-
gorithm 1 shows a general learning scheme with online
learning; batch learning is similar.

First, the SPN is initialized with a generic architecture.
The only requirement on this architecture is that it be valid
(complete and consistent). Then each example is processed
in turn by running inference on it and updating the weights.
This is repeated until convergence. The final SPN is ob-
tained by pruning edges with zero weight and recursively
removing non-root parentless nodes. Note that a weighted
edge must emanate from a sum node and pruning such
edges will not violate the validity of the SPN. Therefore,
the learned SPN is guaranteed to be valid.

Completeness and consistency are general conditions that
leave room for a very flexible choice of architectures. Here,
we propose a general scheme for producing the initial ar-
chitecture: 1. Select a set of subsets of the variables. 2. For
each subset R, create k sum nodes SR

1 , . . . , SR
k , and select

a set of ways to decompose R into other selected subsets
R1, . . . , Rl. 3. For each of these decompositions, and for
all 1 ≤ i1, . . . , il ≤ k, create a product node with par-
ents SR

j and children SR1
i1

, . . . , SRl
il
. We require that only a

polynomial number of subsets is selected and for each sub-
set only a polynomial number of decompositions is cho-
sen. This ensures that the initial SPN is of polynomial size
and guarantees efficient inference during learning and for
the final SPN. For domains with inherent local structure,
there are usually intuitive choices for subsets and decom-
positions; we give an example in Section 5 for image data.
Alternatively, subsets and decompositions can be selected
randomly, as in random forests [4]. Domain knowledge
(e.g., affine invariances or symmetries) can also be incor-
porated into the architecture, although we do not pursue
this in this paper.

Weight updating in Algorithm 1 can be done by gradient
descent or EM. We consider each of these in turn.

SPNs lend themselves naturally to efficient computation
of the likelihood gradient by backpropagation [26]. Let
nj be a child of sum node ni. Then ∂S(x)/∂wij =
(∂S(x)/∂Si(x))Sj(x) and can be computed along with
∂S(x)/∂Si(x) using the marginal inference algorithm de-
scribed in Section 2. The weights can then be updated by
a gradient step. (Also, if batch learning is used instead,
quasi-Newton and conjugate gradient methods can be ap-
plied without the difficulties introduced by approximate in-
ference.) We ensure that S(∗) = 1 throughout by renormal-
izing the weights at each step, i.e., projecting the gradient
onto the S(∗) = 1 constraint surface. Alternatively, we can
let Z = S(∗) vary and optimize S(X)/S(∗).

SPNs can also be learned using EM [20] by viewing each
sum node i as the result of summing out a correspond-
ing hidden variable Yi, as described in Section 2. Now
the inference in Algorithm 1 is the E step, computing the
marginals of the Yi’s, and the weight update is the M step,
adding each Yi’s marginal to its sum from the previous it-
erations and renormalizing to obtain the new weights.
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SPN applications: image completion

1. Main evaluation: Caltech-101

101 categories: such as faces, cars, elephants

Each category: 30 – 800 images

2. Each category: last third for test

3. Test images: unseen objectsCool applications: Face completion

Poon & Domingos 201145 / 65



SPN applications: language modeling

1. Fixed structure SPN encoding the conditional probability p(wi |wi−1 . . . ,wi−N) as an Nth

order language model (Cheng et al. 2014).

Applications IV: language modeling
Fixed structure SPN encoding the conditional probability p(wi|wi−1, . . . , wi−n)

as an n-th order language model.

Figure 2: SPN for language modeling.

probability as

P (Y=y|X=x) =
� (Y=y|X=x)P
y0 � (Y=y0|X=x)

=

P
h � (Y=y,H=h|X=x)P

y0,h � (Y=y0,H=h|X=x)

where � (Y = y|X = x) is an unnormalized probability. Thus
the partial derivative of the conditional log-likelihood with re-
spect to a weight w in an SPN is given by:

@

@w
log P (y|x)=

@

@w
log

X

h

� (y,h|x)� @

@w
log

X

y0,h

�
�
y0,h|x

�

(1)
To train an SPN, we first specify its architecture, i.e., its

sum and product nodes, and the connections between them.
Then we learn the weights of the sum nodes via gradient de-
scent to maximize the conditional log-likelihood of a training
set of (x,y) examples. The gradient of each weight (Equa-
tion 1) is computed via backpropagation. The first summation
on the right-hand side of Equation 1 can be computed tractably
in a single upward pass through the SPN by setting all hid-
den variables to 1, and the second summation can be computed
similarly by setting both hidden and query variables to 1. The
partial derivatives are passed from parent to child according to
the chain rule as described by [14]. Each weight is changed
by multiplying a learning rate parameter ⌘ to Equation 1, i.e.,
�w = ⌘ @

@w
log P (y|x). To speed up training, we could esti-

mate the gradient by computing it with a subset (mini-batch) of
examples from the training set, rather than using all examples.

3. SPN Architecture
Figure 2 shows the architecture of our discriminative SPN for
language modeling1. To predict a word (a query variable), we

1https://github.com/stakok/lmspn/blob/master/faq.md contains
more details about the architecture.

use its previous N words as evidence in our SPN. Each previous
word is represented by a K-dimensional vector where K is the
number of words in a vocabulary. Each vector has exactly one
1 at the index corresponding to the word it represents, and 0’s
everywhere else. When we predict the ith word, we have a
vector vi�j (1  j  N ) at the bottommost layer for each of
the previous N words.

Above the bottommost layer, we have a (hidden) layer of
sum nodes. There are D sum nodes Hj1 . . . HjD for each vec-
tor vi�j . Each sum node Hjl has an edge connecting it to every
entry in vi�j . Let the mth entry in vi�j be denoted by vm

i�j ,
and the weight of the edge from Hjl to vm

i�j be denoted by
wlm. We constrain each weight wlm to be the same for each
pair of Hjl and vm

i�j (1  j  N ). This layer of sum nodes
can be interpreted as compressing each K-dimensional vectors
vi�j into a smaller continuous-valued D-dimensional feature
vector (thus gaining the same advantages of [5] as described in
Section 1). Because the weights wlm’s are constrained to be
the same between each pair of K-dimensional input vector and
D-dimensional feature vector, we ensure that the weights are
position independent, i.e., the same word will be compressed
into the same feature vector regardless of its position. This
also makes it easier to train the SPN by reducing the number
of weights to be learned.

Above the Hjl layer, we have another layer of sum nodes.
In this layer, each node Mk (1  k  K) is connected to every
Hjl node. Moving up, we have a layer of product nodes. Each
Gk product node is connected via two edges to an Mk node.
Each Gk node transforms the output from its child Mk node by
squaring it. This helps to capture more complicated dependency
among the input words.

Moving up, we have another layer of sum nodes. Each Bk

node in this layer is connected to an Mk node and a Gk node in
the lower layers. Above this, there is a layer of Sk nodes, each
of which is connected to a Bk node and an indicator variable yk

representing a value in our categorical query variable (i.e., the
ith word which we are predicting). yk = 1 if the query variable
is the kth word, and yk = 0 otherwise. Intuitively, the indicator
variables select which part of the SPN below an Sk node gets
“activated”. Finally, we have an S node which connects to all
Sk nodes. When we normalize the weights between S and the
Sk nodes to sum to 1, S’s output is the conditional probability
of the ith word given its previous N words.

4. Experiments
4.1. Dataset

We performed our experiments on the commonly used Penn
Treebank corpus [15], and adhered to the experimental setup
used in previous work [6, 9]. We used sections 0-20, sections
21-22, and sections 23-24 respectively as training, validation
and test sets. These sections contain segments of news re-
ports from the Wall Street Journal. We treated punctuation as
words, and used the 10,000 most frequent words in the cor-
pus to create a vocabulary. All other words are regarded as
unknown and mapped to the token <unk>. The percentages
of out-of-vocabulary (<unk>) tokens in them are about 5.91%,
6.96% and 6.63% respectively. Thus only a small fraction of
the dataset consists of unknown words.

4.2. Methodology

Using the training set, we learned the weights of all sum
nodes in our SPN described in Section 3. To evaluate

One-hot encoding of word vocabulary.
Windowed representation of size

First embedding layer with size D,
sharing word weights across different
mixtures (position invariance).

State-of-the-art perplexity on PennTreeBank even for low orders (n = 4).

Cheng et al., “Language modeling with Sum-Product Networks”, 2014
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SPN applications: language modeling

1. Perplexity scores (PPL) of different language modelsits performance on the test set, we used the standard
(per-word) perplexity measure. The perplexity (PPL)
on a sequence of words w1, w2, . . . , wM is given by

PPL = M

vuut
MY

i=1

1

P (wi|w1, ..., wi�1)
.

We estimated the probability P (wi|w1, ..., wi�1) in PPL as
P (wi|wi�1, ..., wi�N ) that is given by our SPN.

We used a learning rate of ⌘=0.1, a mini-batch size of 100,
randomly initialized the weights to a value between 0 and 1, and
imposed an L2 penalty of 10�5 on all weights. With reference
to Figure 2, We used K =10000, feature vectors with D=100
dimensions, and N =3 and N =4 previous words. We denote
an SPN that uses N previous words as SPN-N . We stopped
training our SPN when its performance on the validation set
stops improving at two consecutive evaluation points, or when
it has run for 40 hours, whichever occurred first. (It turned out
that both SPN-3 and SPN-4 ran for the maximum of 40 hours.)
We parallelized our SPN code2 to run on a GPU, and ran our
experiments on a machine with a 2.4 GHz CPU and an NVIDIA
Tesla C2075 GPU (448 CUDA cores, 5GB of device memory).

We compared our SPNs to an interpolated 5-gram model
with modified Kneser-Ney smoothing and no count cutoffs
(KN5) [3], the log-bilinear model [4], feedforward neural net-
works [5], syntactical neural networks [8], recurrent neural net-
works (RNN) [6], and LDA-augmented RNN [9], all of which
are described in Section 1.

4.3. Results

Table 1 shows the results of our experiments. The scores of
comparison systems are obtained from [9]. The “Individual
PPL” column shows the perplexity score of the respective
systems. The “+KN5” column shows the perplexity score af-
ter taking a weighted average of a system’s predictions and
KN5’s predictions (both equally weighted). ‘TrainingSetFre-
quency’ refers to a system that sets the probability of a token
to its frequency of occurrence in the training set. This base-
line is outperformed by all other models, suggesting that they
are capturing some form of dependency among words when
making their predictions. As the table shows, both SPN-3 and
SPN-4 outperform all other systems. Note that even though
LDA-augmented RNN uses additional information from latent
Dirichlet allocation (LDA; which is not used by our SPNs),
SPN-3 and SPN-4 still do better by 8.4% and 5.4% respectively
on “Individual PPL”, and by 16.6% and 16.2% respectively on
“+KN5”. They have more pronounced improvements over the
next best comparison system, RNN (which is a fairer compari-
son because it does not use information beyond what is available
to our SPNs). SPN-3 and SPN-4 outperform RNN by 16.4%
and 13.7% respectively on “Individual PPL”, and by 22.4%
and 22.0% respectively on “+KN5”.

We were initially surprised by SPN-3’s better performance
over SPN-4 (because the latter uses more information and thus
should make better predictions). Upon inspecting their perplex-
ity scores on the training set, we found that SPN-4 consistently
had lower perplexity than SPN-3 during the later stages of train-
ing. This suggests that SPN-4 is overfitting the data. (From Fig-
ure 2, we see that SPN-4 has D⇥K +D⇥K = 2⇥106 more
parameters than SPN-3, and hence is more likely to overfit.)

2Our implementation is publicly available at
https://github.com/stakok/lmspn.

Table 1: Perplexity scores (PPL) of different language models.

Model Individual PPL +KN5
TrainingSetFrequency 528.4
KN5 [3] 141.2
Log-bilinear model [4] 144.5 115.2
Feedforward neural network [5] 140.2 116.7
Syntactical neural network [8] 131.3 110.0
RNN [6] 124.7 105.7
LDA-augmented RNN [9] 113.7 98.3
SPN-3 104.2 82.0
SPN-4 107.6 82.4
SPN-4’ 100.0 80.6

To ameliorate this problem, we used the weights of the smaller
SPN to guide the weight learning in the larger SPN. We trained
an SPN-(N�1) for 10 hours, and used its weights to initialize
the corresponding weights in an SPN-N (all other weights are
initialized to zero) before training the SPN-N for another 10
hours. We repeated this process for N = 2, 3, 4. The final SPN
thus obtained uses 4 previous words and is denoted SPN-4’. As
Table 1 shows, SPN-4’ is the best performing system3.

Running a test example on our SPNs is typically very fast
(sub-second). Our SPNs took less time to train than RNN. To
attain the level of KN5’s perplexity score, RNN4 and SPN-4
took about 10 hours and 4 hours to train respectively.

To demonstrate that our SPN can scale to larger data, we
trained an SPN-4 for 40 hours on the Brown Laboratory for
Linguistic Information Processing 1987-89 WSJ corpus, which
is about 40 times larger than Penn Treebank (PTB). We tested
this SPN-4 on the same test set (section 23-24 of PTB) and ob-
tained a perplexity of 93.0 (an improvement of 13.6% over the
SPN-4 trained on the smaller PTB dataset). This suggests that
our model can scale, and can perform better with more data.

To show that our trained SPN is encapsulating useful in-
formation, we “seeded” it with some random initial words, and
used it to generate a sequence of words. Some examples of the
generated word sequences are shown below. These sentences
have the “flavor” of news reports, and qualitatively suggest that
our SPN is capturing meaningful information from the data.

• IT COULD BE SIMPLY EARNINGS FOR MANY IN-
VESTOR IN THE WATERS FEDERAL CAPITAL

• BUSINESS REGULATORY SAID IT EXPECTS TO
ARGUE OWN ’S THREE MEDICAL INVESTMENT
IN <unk>

5. Conclusion and Future Work
We presented the first SPN that is used for language model-
ing. Our proposed SPN is able to contain multiple hidden layers
to capture rich dependencies among words, while maintaining
tractable inference and training times. Our empirical compar-
isons with six previous language models on the standard Penn
Treebank corpus demonstrate the effectiveness of our SPN.

As future work, we want to combine our SPN language
model with an SPN for acoustic modeling to create an integrated
speech recognition system. We also want to create a “recurrent”
SPN to capture long range dependencies in word sequences.

Acknowledgements. This work is supported by DSO grant
DSOCL13083.

3Note that the total training time for SPN-4’ is also 40 hours, so its
better performance is not due to longer training times.

4We used the RNNLM Toolkit at
http://www.fit.vutbr.cz/ imikolov/rnnlm.
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SPN applications: other applications

1. Image completion

2. Image classification

3. Activity recognition

4. Click-through logs

5. Nucleic acid sequences

6. Collaborative filtering

For more information, please read (Paris, Sanchez-Cauce, and Diez 2020).
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Structured density estimation approach

Markov Random Fields



Markov random field

1. A Markov random field, also known as a Markov network or an undirected graphical

model, has

a set of nodes each of which corresponds to a variable or group of variables and

a set of links each of which connects a pair of nodes.

2. The links are undirected, that is they do not carry arrows.

3. In above undirected graph every path from any node in set A to any node in set B passes

through at least one node in set C . Hence,

A ⊥⊥ B | C
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Factorization properties

1. We need a factorization rule for undirected graphs that correspond to the conditional

independence test.

2. Consider two nodes xi and xj that are not connected by a link, then these variables must

be conditionally independent given all other nodes in the graph.

3. This conditional independence property can be expressed as

p(xi , xj | x\{i,j}) = p(xi | x\{i,j}) p(xj | x\{i,j})

4. The factorization of the joint distribution must be such that xi and xj do not appear in the

same factor in order for the conditional independence property to hold for all possible

distributions belonging to the graph.

5. This leads us to consider a graphical concept called a clique.

6. A maximal clique is a clique such that it is not possible to include any other nodes from

the graph in the set without it ceasing to be a clique.

8.3. Markov Random Fields 385

Figure 8.28 For an undirected graph, the Markov blanket of a node
xi consists of the set of neighbouring nodes. It has the
property that the conditional distribution of xi, conditioned
on all the remaining variables in the graph, is dependent
only on the variables in the Markov blanket.

If we consider two nodes xi and xj that are not connected by a link, then these
variables must be conditionally independent given all other nodes in the graph. This
follows from the fact that there is no direct path between the two nodes, and all other
paths pass through nodes that are observed, and hence those paths are blocked. This
conditional independence property can be expressed as

p(xi, xj |x\{i,j}) = p(xi|x\{i,j})p(xj |x\{i,j}) (8.38)

where x\{i,j} denotes the set x of all variables with xi and xj removed. The factor-
ization of the joint distribution must therefore be such that xi and xj do not appear
in the same factor in order for the conditional independence property to hold for all
possible distributions belonging to the graph.

This leads us to consider a graphical concept called a clique, which is defined
as a subset of the nodes in a graph such that there exists a link between all pairs of
nodes in the subset. In other words, the set of nodes in a clique is fully connected.
Furthermore, a maximal clique is a clique such that it is not possible to include any
other nodes from the graph in the set without it ceasing to be a clique. These concepts
are illustrated by the undirected graph over four variables shown in Figure 8.29. This
graph has five cliques of two nodes given by {x1, x2}, {x2, x3}, {x3, x4}, {x4, x2},
and {x1, x3}, as well as two maximal cliques given by {x1, x2, x3} and {x2, x3, x4}.
The set {x1, x2, x3, x4} is not a clique because of the missing link from x1 to x4.

We can therefore define the factors in the decomposition of the joint distribution
to be functions of the variables in the cliques. In fact, we can consider functions
of the maximal cliques, without loss of generality, because other cliques must be
subsets of maximal cliques. Thus, if {x1, x2, x3} is a maximal clique and we define
an arbitrary function over this clique, then including another factor defined over a
subset of these variables would be redundant.

Let us denote a clique by C and the set of variables in that clique by xC . Then

Figure 8.29 A four-node undirected graph showing a clique (outlined in
green) and a maximal clique (outlined in blue). x1

x2

x3
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Factorization properties

1. We can define the factors in the decomposition of the joint distribution to be functions of

the variables in the cliques.

2. We can consider functions of the maximal cliques, because other cliques must be subsets

of maximal cliques.

3. If {x1, x2, x3} is a maximal clique and we define an arbitrary function over this clique, then

including another factor defined over a subset of these variables would be redundant.

4. Let us denote a clique by C and the set of variables in that clique by xC .

5. The joint distribution is written as a product of potential functions ψ(xC ) > 0 over the

maximal cliques of the graph.

p(x) =
1

Z

∏

C

ψ(xC )

6. The quantity Z , called the partition function, is a normalization constant given by (for

discrete variables)

Z =
∑

x

∏

C

ψ(xC )

to ensure the distribution p(x) is correctly normalized.
52 / 65



Relation between directed and undirected graphs

1. Consider the following graphs
390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN ). (8.45)

2. For the directed graph, we have

p(x) = p(x1) p(x2 | x1) p(x3 | x2) . . . p(xN | xN−1)

3. For the undirected graph, we have

p(x) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N(xN−1, xN)
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Variational inference

1. Let D be the data set.

2. Let p(x) ≜ p(x | D) be the true but intractable distribution.

3. Let q(x) be some approximation chosen from some tractable family Q such as

multi-variate Gaussian.

4. We assume q(x) has some free parameters which we want to optimize so as to make q

”similar to” p.

5. An obvious cost function is to try minimize the difference between qθ and p.

54 / 65



Variational inference

1. An obvious cost function is to try minimize the KL divergence between qθ and p.

DKL(p || q) =
∑

x

p(x) log
p(x)

q(x)

= Ep

[
log

p(x)

q(x)

]

2. This is hard to compute, since Ep[.] is assumed to be intractable.
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Variational inference

1. A natural alternative is the reverse KL divergence.

DKL(q || p) =
∑

x

q(x) log
q(x)

p(x)

= Eq

[
log

q(x)

p(x)

]

2. The main advantage of the objective function is that computing Eq[.] is tractable.

3. Equation Eq

[
log q(x)

p(x)

]
is not tractable because evaluating p(x) point-wise is hard since

it requires Z =
∫
x p(x).

4. By using un-normalized distribution p̃(x) ≜ p(x | D) = p(x)Z , it becomes tractable to

compute.

5. Then, we define the objective function as

J(q) = DKL(q || p̃)
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Variational inference

1. Then, we define the objective function as

J(q) = DKL(q || p̃)

2. The above KL was abused because p̃ is not a valid distribution.

J(q) =
∑

x

q(x) log
q(x)

p̃(x)

=
∑

x

q(x) log
q(x)

Z p(x)

=
∑

x

q(x) log
q(x)

p(x)
− logZ

= DKL(q || p)− logZ

3. Since Z is a constant, by minimizing J(q), we will force q to become close to p.
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Variational inference

1. Since KL divergence is always non-negative, J(q) is an upper bound on logZ .

J(q) = DKL(q || p)− logZ

= −logZ

2. The value of logZ is called evidence lower bound (ELBO).

3. Alternatively, we can try to maximize the following quantity, called energy functional.

L(q) = −J(q)

= −DKL(q || p) + logZ

≤ logZ .

4. This is a lower bound on the log likelihood of the data.
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Alternative interpretation of J(q)

1. The objective function J(q) can be written as

J(q) = Eq[log q(x)] + Eq[log p̃(x)]

= H(q) + Eq[E (x)]

where E (x) = − log p̃(x) is energy.

2. Thus, J(q) is expected energy minus Entropy of the system.

3. In statistical physics, J(q) is called the variational free energy or the Helmholtz free energy.
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Computing KL divergence

1. Let p and q be two k-dimensional Gaussian distribution.

p(x) =
1

(2π)k/2|Σp|1/2
exp

(
−1

2
(x− µp)

TΣ−1
p (x− µp)

)

q(x) =
1

(2π)k/2|Σq|1/2
exp

(
−1

2
(x− µq)

TΣ−1
q (x− µq)

)

2. Then, KL divergence can be written as

DKL(p || q) = Ep[log p− log q]

= Ep

[
1

2
log

|Σq|
|Σp|

− 1

2
(x− µp)

TΣ−1
p (x− µp) +

1

2
(x− µq)

TΣ−1
q (x− µq)

]

=
1

2
Ep

[
log

|Σq|
|Σp|

]
− 1

2
Ep

[
(x− µp)

TΣ−1
p (x− µp)

]
+

1

2
Ep

[
(x− µq)

TΣ−1
q (x− µq)

]

=
1

2
log

|Σq|
|Σp|

− 1

2
Ep

[
(x− µp)

TΣ−1
p (x− µp)

]
+

1

2
Ep

[
(x− µq)

TΣ−1
q (x− µq)

]

3. Since, (x− µp)
TΣ−1

p (x− µp) is a scaler, we can write it as

tr((x− µp)
TΣ−1

p (x− µp)) = tr((x− µp)(x− µp)
TΣ−1

p ).

60 / 65



Computing KL divergence

1. The expectation and trace can be interchanged to get,

=
1

2
tr(Ep

[
(x− µp)(x− µp)

TΣ−1
p

]
)

=
1

2
tr(Ep

[
(x− µp)(x− µp)

T
]
Σ−1

p )

2. We know Σp = Ep

[
(x− µp)(x− µp)

T
]
. Simplifying it to

1

2
tr(Ep

[
(x− µp)(x− µp)

T
]
Σ−1

p ) =
1

2
tr(ΣpΣ

−1
p )

=
1

2
tr(Ik) =

k

2

3. By using matrix cookbook, the third term is also equals to

Ep

[
(x− µq)

TΣ−1
q (x− µq)

]
= (µp − µq)

TΣ−1
q (µp − µq) + tr(Σ−1

q Σp)

4. Combining all this we get,

DKL(p || q) = 1

2

{
log

|Σq|
|Σp|

− k + (µp − µq)
TΣ−1

q (µp − µq) + tr(Σ−1
q Σp)

}

5. What happens if we have not distributions explicitly?
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Mean field variational inference

1. In mean field variational inference, we assume that the variational family factorizes,

q(x1, . . . , xd) =
d∏

j=1

p(xj)

2. The goal is to solve this optimization problem:

min
q1,...,qd

DKL(q || p)

3. We optimize over the parameters of each marginal distribution qi .

4. The standard way of performing this optimization problem is via coordinate descent over

the qj .

5. Interestingly, the optimization problem for one coordinate has a simple closed form

solution.
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Advantages of SPNs

1. We can estimate distribution functions using parametric or non-parametric methods.

2. In probability graphical models, we can find the structure of distribution function.

3. Unlike graphical models, SPNs are tractable over high treewidth models.

4. SPNs are deep architectures with full probabilistic semantics

5. SPNs can incorporate features into an expressive model without requiring approximate

inference.
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