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Introduction



Introduction (Statistical / Deep Generative Models)

1. A Generative model (GM) is a probability distribution p(x).

A statistical GM is a trainable probabilistic model, pθ(x).

A deep GM is a statistical generative model parametrized by a neural network.

2. A generative model needs

Data (x): Complex, unstructured samples such as images, speech, molecules, text, etc.

Prior knowledge: parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g.,

maximum likelihood, divergence), optimization algorithm, etc.

Credit: Aditya Grover
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Introduction (Key Questions)

1. A Representation: how do we parameterize the joint distribution of many random

variables?

2. A Learning: what is the right way to compare probability distributions?

3. A Inference: how do we invert (or encode) the generation process?

Credit: Aditya Grover
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Generative models categories

Generative models

Explicit density

Tractable density Approximate density Unnormalized density

Implicit density

Autoregressive

Normalizing Flows

VAEs

Diffusion models

Energy-based

GANs

Directly learn

density

Learn approximation

of density, e.g.

lower bound

Learn unnormalized

density

compare real vs

generated samples
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Autoregressive models



Autoregressive models

1. Suppose we have a dataset S = {x1, x2, . . . , xm} of n-dimensional points x .

2. For simplicity, we assume points are binary, i.e., x ∈ {0, 1}n.

3. Using chain rule, we can factorize the joint distribution as

p(x) = p(x1, x2, . . . , xn) =
n∏

i=1

p(xi |x1, x2, . . . , xi−1) =
n∏

i=1

p(xi |x<i )

where x<i = [x1, x2, . . . , xi−1] denotes vector of random variables with index less than i .

4. The chain rule factorization can be expressed graphically as a Bayesian network.

x1 x2 . . . xd−1 xd
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Autoregressive models

1. The autoregressive constraint is a way to model sequential data.

2. The factorization contains n factors and some of these factors contain many parameters (

O(2n) in total).

3. It is infeasible to learn such an exponential number of parameters.

4. AR models use (deep) neural network to parameterize these factors p(xi |x<i ).

5. We assume the conditional distributions p(xi |x<i ) correspond to Bernoulli random

variables and learn a function that maps the proceeding random variables x1, x2, . . . , xi−1

to the mean of this distribution as

pθi (xi |x<i ) = Bern(fi (x1, x2, . . . , xi−1))

where θi denotes the set of parameters used to specify the mean function

fi : {0, 1}i−1 7→ [0, 1].

6. The number of parameters of an autoregressive generative model equals to
∑n

i=1|θi |.

7. Tractable exact likelihood computations.

8. No complex integral over latent variables in likelihood

9. Slow sequential sampling process.

10. Cannot rely on latent variables.
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Autoregressive models

1. The nth output should only be connected to the previous n − 1 inputs.

2. For example, when computing p(x4|x3, x2, x1) the only inputs that we should consider are

x1, x2, x3 because these are the only variables given to us while computing the conditional

probability.
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At the output layer we want to predict
n conditional probability distributions (each
corresponding to one of the factors in our joint
distribution)

At the input layer we are given the n input
variables

Now the catch is that the nth output should
only be connected to the previous n-1 inputs

In particular, when we are computing
p(x3|x2, x1) the only inputs that we should
consider are x1, x2 because these are the only
variables given to us while computing the
conditional

Mitesh M. Khapra CS7015 (Deep Learning) : Lecture 22

7 / 41



Autoregressive models

1. In the simplest case, we can specify the function as a linear combination of the input

elements followed by a sigmoid non-linearity (to restrict the output to lie between 0 and 1).

2. This gives us the formulation of a fully-visible sigmoid belief network (FVSBN).

fi (x1, x2, . . . , xi−1) = σ


ai0 +

i−1∑

j=1

aijxj




where σ is sigmoid function and θi = {ai0, . . . , aii−1}.

3. At the output layer we want to predict n conditional probability distributions while at the

input layer we are given the n input variables.

x̂1 x̂2 x̂3 x̂4

x1 x2 x3 x4

4. The conditional variables xi |x1, . . . , xi−1 are Bernoulli with parameters

x̂i = p(xi = 1|x1, . . . , xi−1; θi ) = σ


ai0 +

i−1∑

j=1

aijxj
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Autoregressive models

1. How to evaluate p(x1, . . . , x900)?

2. Multiply all the conditionals factors.

3. How to sample from p(x1, . . . , x900)?

Sample x̄1 ∼ p(x1).

Sample x̄2 ∼ p(x2|x1 = x̄1).

Sample x̄3 ∼ p(x3|x1 = x̄1, x2 = x̄2).

4. How many parameters? 1 + 2 + 3 + . . .+ n ≈ n2

2

x̂1 x̂2 x̂3 x̂4

x1 x2 x3 x4

9 / 41



FVSBN results (Gan et al. 2015)

1. Left: Training (Caltech 101 Silhouettes) Right: Samples from the model

FVSBN Results

Training data on the left (Caltech 101 Silhouettes). Samples from the
model on the right.
Figure from Learning Deep Sigmoid Belief Networks with Data
Augmentation, 2015.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 8 / 31
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Neural Autoregressive Density Estimator

1. To increase the expressiveness of an autoregressive generative model, we can use more

flexible parameterizations for the mean function such as MLP instead of logistic regression.

2. For example, consider the case of a neural network with one hidden layer.

3. The mean function for variable i can be expressed as

hi = σ(Aix<i + ci )

fi (x1, x2, . . . , xi−1) = σ
(
aihi + bi

)

where hi ∈ Rd is hidden layer activations of MLP.

4. Hence, we have the following architecture
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Neural Autoregressive Density Estimator

1. To improve model, use a neural network with one hidden layer instead of logistic

regression.

hi = σ(Aix<i + ci )

x̂i = p(xi = 1|x1, . . . , xi−1;θ
i ) = σ(α(i)hi + bi )

θi = {Ai , ci ,α
(i), bi}

2. hi ∈ Rd denotes the hidden layer activations for the MLP.

3. θi = {Ai ∈ Rd×(i−1), ci ∈ Rd ,α(i) ∈ Rd , bi ∈ R} are the set of parameters.

4. Hidden layer parameters are shared and only the relevant columns of A are used for each i .

5. The total number of parameters in this model is dominated by the matrices Ai and given

by O(nd + n).
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Neural Autoregressive Density Estimator

1. The Neural Autoregressive Density Estimator (NADE) provides an alternate MLP-based

parameterization that is more statistically and computationally efficient than the given

approach (Larochelle and Murray 2011).

2. In NADE, parameters are shared across the functions used for evaluating the conditionals.

3. The hidden layer activations are specified as

hi = σ(W.,<ix<i + c)

x̂i = p(xi = 1|x1, . . . , xi−1;θ
i ) = σ(α(i)hi + bi )

4. θ = {W ∈ Rd×n, c ∈ Rd , {α(i) ∈ Rd}ni=1, {bi ∈ R}ni=1} is the full set of parameters.

5. The weight matrix W and the bias vector c are shared across the conditionals.
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Neural Autoregressive Density Estimator

1. Sharing parameters has two benefits:

The total number of parameters gets reduced from O(n2d) to O(nd).

Hidden unit activations can be evaluated in O(nd) time via

hi = σ(ai )

ai+1 = ai +W [., i ]xi

with the base case given by a1 = c.

2. Training of NADE is done by minimizing − 1
T

∑T
i=1 log p(xi )

3. Samples from NADE trained on a binary version of MNIST.

      36

The Neural Autoregressive Distribution Estimator

Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.
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where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-
mation form and have used the fact that µj(i) = vj for
j < i.

Similarly, we set the derivative with respect to µj(i)
for j � i to 0 and obtain:

0 =
@KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

@µj(i)

0 = �bj � ⌧(i)>W·,j + log

✓
µj(i)

1� µj(i)

◆

µj(i)

1� µj(i)
= exp(bj + ⌧(i)>W·,j)

µj(i) =
exp(bj + ⌧(i)>W·,j)

1 + exp(bj + ⌧(i)>W·,j)

µj(i) = sigm

 
bj +

X

k

Wkj⌧k(i)

!

We then recover the mean-field updates of Equa-
tions 7 and 8.
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Deep NADE

1. The input to the network (DeepNADE) is the concatenation of the masked data and the

mask itself (Uria, Côté, et al. 2016).

2. This allows the network to identify cases when input data is truly zero from cases when

input data is zero because of the mask.

3. NADE also explored other autoencoder architectures such as convolutional neural networks

4. DeepNade with two hidden layers
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Real-Valued NADE

1. The RNADE algorithm extends NADE to learn generative models over real-valued

data (Uria, Murray, and Larochelle 2013).

2. The conditionals are modeled via a continuous distribution such as mixture of K Gaussian.

p(xi |x<i ) =
K∑

j=1

πijN (µij , σ
2
ij)

Output of the network are parameters of a mixture model

for p(xk |x<k)

Means are µi,k = bµi
i,k +αµi

i,khi

Standard deviations are σi,k = exp
(
bσi
i,k +ασi

i,khi
)

Mixing weights are πi,k = softmax
(
bπi
i,k +απi

i,khi
)

REAL-VALUED NADE 
(Uria, Murray, Larochelle)

13

x1 x2 x3 x4

h hh(1) h
(4)(3)(2)

bx1 bx2 bx3 bx4

• RNADE: models real-valued observations by
‣ outputting the parameters 

of a mixture model for  

Means

Std. deviations

Mixing weights

p(xk|x<k)

�ik = exp(b�i

k + V�i

k,·h
(k))

µik = bµi

k + Vµi

k,·h
(k)

⇡ik = softmax(b⇡i

k + V⇡i

k,·h
(k))

3. Please study DocNADE.
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Autoregressive models vs. Autoencoders

1. Considering the following models.
Autoregressive models vs. autoencoders

On the surface, FVSBN and NADE look similar to an autoencoder:

an encoder e(·). E.g., e(x) = �(W 2(W 1x + b1) + b2)

a decoder such that d(e(x)) ⇡ x . E.g., d(h) = �(Vh + c).

Loss function
Binary r.v.: min

W 1,W 2,b1,b2,V ,c

X

x2D

X

i

�xi log x̂i � (1 � xi ) log(1 � x̂i )

Continuous r.v.: min
W 1,W 2,b1,b2,V ,c

X

x2D

X

i

(xi � x̂i )
2

e and d are constrained so that we don’t learn identity mappings. Hope that
e(x) is a meaningful, compressed representation of x (feature learning)

A vanilla autoencoder is not a generative model: it does not define a
distribution over x we can sample from to generate new data points.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 15 / 31

2. FVSBN and NADE look similar to an autoencoder.

3. An encoder computing hidden.

4. A decoder computing densities.

5. A loss function, which is likelihood.
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Autoregressive Autoencoders

1. An autoencoder is not a generative model: it does not define a distribution over x for

sampling new data points.

A
utoregressive

auto
enco

ders

O
n

th
e

su
rface,

F
V

S
B

N
an

d
N

A
D

E
lo

ok
sim

ilar
to

an
a
u
to

en
co

d
er.

C
an

w
e

get
a

gen
erative

m
o
d
el

from
an

au
to

en
co

d
er?

W
e

n
eed

to
m

ake
su

re
it

corresp
on

d
s

to
a

valid
B

ayesian
N

etw
ork

(D
A
G

stru
ctu

re),
i.e.,

w
e

n
eed

an
ord

erin
g.

If
th

e
ord

erin
g

is
1,2

,3,
th

en
:

x̂
1

can
n
ot

d
ep

en
d

on
an

y
in

p
u
t

x
.

T
h
en

at
gen

eration
tim

e
w
e

d
on

’t
n
eed

an
y

in
p
u
t

to
get

started
x̂
2

can
on

ly
d
ep

en
d

on
x
1

···
B

o
n
u
s:

w
e

can
u
se

a
sin

gle
n
eu

ral
n
etw

ork
(w

ith
n

ou
tp

u
ts)

to
pro

d
u
ce

all
th

e
p
aram

eters.
In

con
trast,

N
A

D
E

req
u
ires

n
p
asses.

M
u
ch

m
ore

e�
cien

t
on

m
o
d
ern

h
ard

w
are.

S
tefa

n
o

E
rm

o
n
,
A

d
itya

G
ro

ver
(A

I
L
a
b
)

D
eep

G
en

era
tive

M
o
d
els

L
ectu

re
3

1
6

/
3
1

2. Can we get a generative model from an autoencoder?

3. We need to make sure it corresponds to a valid Bayesian Network, i.e., we need an

ordering. If the ordering is 1, 2, 3, then

x̂1 cannot depend on any input x .

x̂2 can only depend on x1.

4. We can use a single neural network to produce all the parameters.
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Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is an autoencoder that preserves autoregressive property (Germain et al. 2015).
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Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is a specially designed architecture to enforce the autoregressive property in the

autoencoder efficiently.

2. MADE removes the contribution of certain hidden units by using mask matrices so that

each input dimension is reconstructed only from previous dimensions in a given ordering in

a single pass.

3. In a multilayer fully-connected neural network, say, we have L hidden layers with weight

matrices W1, . . . ,WL and an output layer with weight matrix V . The output x̂ has

dimensions x̂i = p(xi |x1:i−1)

4. Without any mask, we have

h0 = x

hl = activationl(Wlhl−1 + bl)

x̂ = σ(VhL + c)
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Masked Autoencoder for Distribution Estimation (MADE)

1. Without any mask, we have

h0 = x

hl = activationl(Wlhl−1 + bl)

x̂ = σ(VhL + c)

2. To zero out some connections between layers, we can simply element-wise multiply every

weight matrix by a binary mask matrix.

hl = activationl((Wl⊙MWl

)hl−1 + bl)

x̂ = σ((V⊙MV)hL + c)

3. Mask matrix is constructed by a labeling process.

RESULTS
• Binarize MNIST

63

MADE: Masked Autoencoder for Distribution Estimation

Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) 13.19 12.58 82.31 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ⇡28.17 ⇡46.10 ⇡28.83

MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling 13.13 11.90 79.66 9.69 277.28 30.04 46.74 28.25

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model � log p

RBM (500 h, 25 CD steps) ⇡ 86.34

In
tr

ac
ta

bl
e

DBM 2hl ⇡ 84.62
DBN 2hl ⇡ 84.55
DARN nh=500 ⇡ 84.71
DARN nh=500, adaNoise ⇡ 84.13

MoBernoullis K=10 168.95

Tr
ac

ta
bl

e

MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (128 orderings) 85.10

MADE 1hl (1 mask) 88.40
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64

7. Conclusion
We proposed MADE, a simple modification of autoencoders
allowing them to be used as distribution estimators. MADE
demonstrates that it is possible to get direct, cheap estimates
of high-dimensional joint probabilities, from a single pass
through an autoencoder. Like standard autoencoders, our ex-
tension is easy to vectorize and implement on GPUs. MADE
can evaluate high-dimensional probably distributions with
better scaling than before, while maintaining state-of-the-art
statistical performance.

Acknowledgments
We thank Marc-Alexandre Côté for helping to implement
NADE in Theano and the whole Theano (Bastien et al.,
2012; Bergstra et al., 2010) team of contributors. We also
thank NSERC, Calcul Québec and Compute Canada.
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Masked Autoencoder for Structured Distribution Estimation (MASDE)

1. This method is used when the structure (Markov random field) of the data is

known (Khajenezhad, Madani, and Beigy 2021).

2. In structured distributions, the graph structure of the variables declares their conditional

dependencies.

3. Therefore, having a graph structure, each of the chain rule conditional terms might be

presentable by a conditional probability on a smaller set of variables.

4. For each i , we assume there is a subset Bi ⊆ {1, . . . , i − 1} such that p(xi |x<i ) = p(xi |xBi ).

5. Use an auoencoder that has the above autoregressive property and mask matrix is

constructed by a labeling process.

6. MASDE needs a smaller training set in comparison with its counterparts.IEE
E P

ro
of

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Results of MADE, MASDE, and MAGSDE on the 4× 4 grid data set, using a fixed (grid-based) order of dimensions (left), ten uniformly random
permutations of dimensions (middle) and ten random selections among the 16 possible grid-based orders (right).

Fig. 3. Results of MADE, MASDE, and MASDE with random subsets
instead of the looking-back Markov blankets, on the sparse 20 dimensional
data set, using a fixed order of dimensions (left) and ten uniformly random
permutations of dimensions (right).

performance of MASDE and MAGSDE does not have a con-587

siderable change by increasing the number of hidden layers,588

but MADE has improved and also has become more robust589

Fig. 4. Results of MADE, MASDE, and MAGSDE with ten random
selections among the 16 possible grid-based dimension orders, on the 4× 4
grid data set with four (left) and six (right) hidden layers.

to the changes in the size of the hidden layers, despite that 590

the number of its parameters has been increased (comparing 591

the right column of Fig. 2 with Fig. 4). It shows that the 592
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PixelRNN

1. PixelRNN is a deep generative model for images (Oord, Kalchbrenner, and Kavukcuoglu

2016).

2. Dependency on previous pixels modeled using an RNN (LSTM).
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PixelCNN

1. The main drawback of PixelRNN is that training is very slow.

2. PixelCNN uses standard convolutional layers to capture a bounded receptive field and

compute features for all pixel positions at once (Oord, Kalchbrenner, Espeholt, et al.

2016).

3. In PixelCNN, pooling layers are not used.

4. Masks are adopted in the convolutions to restrict the model from violating the conditional

dependence.

5. Please also PixelCNN++ (Salimans et al. 2017). 24 / 41



PixelCNN

1. The training set (CIFAR-10 (left)) and the samples generated by the PixelCNN (right).

Pixel Recurrent Neural Networks

Figure 7. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

# layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set (bits/dim).

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. All our
results were obtained without data augmentation. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the
Row LSTM has a partially occluded view and the Pixel-
CNN sees the fewest pixels in the context. This suggests
that effectively capturing a large receptive field is impor-
tant. Figure 7 (left) shows CIFAR-10 samples generated

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]:  80.97

PixelCNN: 81.30
Row LSTM: 80.54
Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

from the Diagonal BiLSTM.

5.7. ImageNet

Although to our knowledge the are no published results on
the ILSVRC ImageNet dataset (Russakovsky et al., 2015)
that we can compare our models with, we give our Ima-
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WaveNet

1. WaveNet is very similar to PixelCNN but applied to 1-D audio signals (Oord, Dieleman,

et al. 2016).

2. WaveNet consists of a stack of causal convolution which is a convolution operation

designed to respect the ordering.

3. Causal convolutions used for temporal data which ensures the model cannot violate the

ordering in which we model the data: the prediction p(xt+1|x1, . . . , xt).

4. The causal convolution in WaveNet is simply to shift the output by a number of

timestamps to the future so that the output is aligned with the last input element.
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WaveNet

1. One big drawback of convolution layer is a very limited size of receptive field.

2. WaveNet therefore adopts dilated convolution, where the kernel is applied to an

evenly-distributed subset of samples in a much larger receptive field of the input.
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Autoregressive Transformers



Transformers model

1. The attention make it possible to do sequence to sequence modeling without recurrent

network units (Vaswani et al. 2017).

2. The transformer model is entirely built on the self-attention mechanisms without using

sequence-aligned recurrent architecture.

Figure: Jay Alammar

3. The encoding component is a stack of six encoders.

4. The decoding component is a stack of decoders of the same number.
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Transformers training

1. The Transformers works slightly differently during training and inference.

2. Input sequence: You are welcome in English.

3. Target sequence: De nada in Spanish

Figure:Ketan Doshi
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Transformers inference

1. During Inference, we have only the input sequence and don’t have the target sequence to

pass as input to the Decoder.

2. The goal is to produce the target sequence from the input sequence alone.

Figure:Ketan Doshi
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Transformers decoder

1. The Decoder passes its input into a Multi-head Self-attention layer.

2. This operates in a slightly different way than the one in the Encoder.

3. It is only allowed to attend to earlier positions in the sequence. This is done by masking

future positions.

Figure: Ketan Doshi
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Transformers decoder attention layers

1. The attention layers of Transformers decoder are

Figure: Ketan Doshi
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GPT

GPT uses only the Transformers decoder blocks (Radford et al. 2018):
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Transformers decoder self-attention and masking

1. The Decoder Self-Attention works just like the Encoder Self-Attention, except that it

operates on each word of the target sequence.

Figure: Ketan Doshi
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Transformers decoder encoder-decoder attention and masking

1. The Encoder-Decoder Attention takes its input from two sources.

2. The Encoder-Decoder Attention computes the interaction between each target word with

each input word.

3. The Masking masks out the Padding words in the target sequence.

Figure: Ketan Doshi
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Transformers decoder

1. At the time step n, we have input x1, . . . , xn tokens to the decoder.

2. The output attention tensor Yn from the masked self-attention head is computed as

follows.

Yn = softmax

(
Mask

(
QnK

⊤
n√

dk

))
Vn

3. In the time step n + 1, we have next token xn+1 and

Qn+1 = xn+1WQ =

[
Qn

qn+1

]

Kn+1 = xn+1WK =

[
Kn

kn+1

]

Vn+1 = xn+1W
V =

[
Vn

vn+1

]

where qn+1, kn+1, vn+1 are new attention tokens.
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Transformers decoder

Yn+1 = softmax

(
Mask

(
Qn+1K

⊤
n+1√

dk

))
Vn+1

= softmax


Mask


 1√

dk

[
Qn

qn+1

][
Kn

kn+1

]⊤



[
Vn

vn+1

]

= softmax

(
Mask

(
1√
dk

[
Qn

qn+1

] [
K⊤
n k⊤

n+1

]))[ Vn

vn+1

]

= softmax

(
Mask

(
1√
dk

[
QnK

⊤
n Qnk

⊤
n+1

qn+1K
⊤
n qn+1k

⊤
n+1

]))[
Vn

vn+1

]

= softmax




 Mask

(
1√
dk
QnK

⊤
n

)
−∞

1√
dk
qn+1K

⊤
n

1√
dk
qn+1k

⊤
n+1





[
Vn

vn+1

]

=



[
softmax

(
Mask

(
1√
dk
QnK

⊤
n

))
0
]

softmax
(

1√
dk
qn+1

[
K⊤
n k⊤

n+1

])


[
Vn

vn+1

]

=


softmax

(
Mask

(
1√
dk
QnK

⊤
n

))
Vn

softmax
(

1√
dk
qn+1K

⊤
n+1

)
Vn+1


 =

[
Yn

yn+1

]
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Transformers decoder

Hence, the new attention tensor yn+1 can be computed using

yn+1 = softmax

(
1√
dk

qn+1K
⊤
n+1

)
Vn+1

= softmax

(
1√
dk

qn+1

[
K⊤
n k⊤

n+1

])[ Vn

vn+1

]

= softmax

(
1√
dk

xn+1W
Q
[
K⊤
n W⊤

K x
⊤
n+1

])[ Vn

xn+1WV

]

Computing the new attention tensor yn+1 for the new attention token xn+1 is a operation O(n).
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Reading

1. Chapter 22 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

2. Chapter 2 of Deep Generative Modeling (Tomczak 2022).
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