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Abstract

Pipelined operator tree (POT) scheduling is an important problem in the area of parallel query optimization. A POT is a tree with

nodes representing query operators that can run in parallel and edges representing communication between adjacent operators that

is handled by sending long streams of data in a parallel-pipelined fashion. The problem is to find a schedule for the POT that

minimizes the total response time. This problem has only been previously addressed for homogeneous environments, but the new

parallel database systems tend to be more heterogeneous. In this paper, we consider processors with different fixed speeds (called

uniform processor system). This problem has been shown to be NP-hard even for identical processors. We propose three

approximate algorithms for some special cases of the problem with good low-performance ratio (or approximation factor) bound in

the worst case. The performance ratios of these algorithms, even for the general case, are shown by experimentation to be near

optimal on the average. We will show that the performance ratios of these algorithms, if used for homogeneous systems, are lower

than the previous results. For the general case, we propose an algorithm which has a constant bound on the performance ratio in the

worst case and is near optimal on the average.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

With emerging sophisticated applications on parallel
database systems, such as decision support systems and
data mining that access a large amount of data in most
tables of the database, the need to minimize the query
response time is more than ever. In such systems, the
parallel query optimization which is to find the best
execution plan of the queries, is more important and
complicated than before. To reduce the complexity of
this problem, some researchers have used a two-phase
approach [8,13,16]: join ordering and query rewriting
followed by parallelization and scheduling. In the first
phase, the optimizations of the high-level query opera-
tions are performed, such as algebraic transformations,
reordering of joins, etc. The annotated query tree
generated in the first phase is then scheduled on the
parallel machine, in the second phase. In this phase,
atomic units of the query for parallel execution, called
operators, are extracted first and then scheduled to
provide the minimum response time. Many researchers

have solved this problem only for special underlying
hardware architectures and/or special groups of queries
[5,16]. But, some others have considered this as a pure
scheduling problem [10,11,14]. We use similar approach
in this paper. One of the most important issues that
must be considered is the parallelism–communication
trade-off [6,7]. Scheduling two communicating opera-
tors on different processors can speed up query
execution, but because of the involved communication
cost, it can also increase the overall query execution
time. To consider this trade-off, the query to be
scheduled is represented as a weighted operator tree in
which each node represents an operator and each edge
represents the timing constraint between operators
[14,16]. A timing constraint is either a precedence or
parallel constraint.
The parallel constraint requires that the two adjacent

nodes start and terminate their works approximately at
the same time and behave as a producer–consumer
system where the producer sends a long stream of
communication data to the consumer.
A weighted operator tree in which all edges represent

parallel constraints is called a pipelined operator tree
(POT) [14]. POT scheduling problem is to find a
schedule of the operators in POT that minimizes the

ARTICLE IN PRESS

�Corresponding author.

E-mail addresses: termechi@ce.sharif.edu (A. Termehchi),

ghodsi@sharif.ac.ir (M. Ghodsi).

0743-7315/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0743-7315(03)00034-0



total response time. The communication cost in the POT
makes its scheduling different from the classical
scheduling problems. The important part of the com-
munication cost is the send and receive CPU overhead.
This is because the data are transmitted in long streams.
If adjacent nodes in POT are assigned to one processor,
the communication cost between these nodes are saved,
but this would decrease the degree of parallelism.
The POT scheduling problem was first introduced by

Hasan and Motwani for identical processor systems and
was shown to be NP-hard [14]. They proposed several
approximation algorithms for restricted cases of the
POT. Chekuri et al. devised two algorithms for the
general case [4]. The first one, called LocalCuts, has
the worst-case performance ratio of 3þ

ffiffiffiffi
17

p

2
and runs in

Oðn log nÞ time. The second, called BoundedCuts, has
a smaller performance ratio of ð1þ eÞ2:87; at the
expense of higher time complexity of Oð1e n log nÞ:
Chekuri has also shown that there exists a polynomial-
time approximation schema (PTAS) for this problem [3].
This result is not practical because of its very high time
complexity.
On the other hand, efficient approximate solution for

parallel query optimization in heterogeneous processor
systems has been considered to be a challenging problem
[8,13]. Nowadays, there are many parallel database
systems based on heterogeneous processors. Systems
based on network of workstations or PC clusters are
good examples of such systems [1,2,17,18]. The work-
stations may differ in processor speed, amount of
memory and the speed and the number of attached
disks. A practical example is given in [18] where a PC-
cluster-based parallel database was used with hetero-
geneous processors. Moreover, the commodity inter-
connections such as Myrinet or ATM switches make
pipelining a practical way and sometimes the only way
to speed up query execution [2,17].
To the best of our knowledge, heterogeneity of

resources has not been considered before in the context
of the problem that we are dealing with. In this paper,
we define POT scheduling on processors with different
fixed speeds (called uniform processor system [12].).
First, we extend LocalCuts and BoundedCuts
algorithms for two uniform processors with lower
worst-case performance ratio compared to the homo-
geneous case. We then extend LocalCuts heuristics for
a more frequently occurring case of the problem (which
is described later) with the worst-case performance ratio
lower than the homogeneous case. We also propose an
algorithm based on the LocalCuts heuristics to solve
the problem in the general case and prove that the
algorithm has a constant bound on its performance
ratio. Experimental results show near-optimal average
case performance ratios for all of our algorithms.
The organization of this paper is as follows. An

overview of the model and problem definition are

discussed in Section 2. In Section 3, we present our
POT scheduling algorithms for a system with two
uniform processors. The solutions for POT scheduling
on an arbitrary number of uniform processors are
presented in Section 4. Section 5 includes experimental
results which follows with conclusions and future works.

2. The model and problem definition

The following definitions are based on earlier models
presented in [4,14].
A POT is represented as a weighted operator tree P ¼

ðV ;EÞ: The weight pk of the node k is the time to run the
operator in isolation assuming all communications are
local. The weight ckj of the edge from node k to node j is
the additional CPU overhead that both k and j will
incur for interoperation communication if they are
scheduled on different processors. A schedule of P on p

processor is a partition of V ; the set of nodes, into p sets
F1;y;Fp such that set Fk is assigned to processor k: The
load of processor k; denoted by Lk; is the cost of
executing all nodes in Fk plus the overhead for
communicating with nodes on other processors. That
is, Lk ¼

P
jAFk

½pj þ
P

leFk
cjl �: Lmax is max1pkpp Lk:

In order to schedule the POT, two operations are used
to modify it: Collapseð k; jÞ is to replace adjacent nodes k

and j by a single node k0 having weight of tk0 ¼ tk þ tj:
Edges connected to either k or j are connected to k0

instead. Operation Cutð k; jÞ is to delete edge ekj and add
its weight to those of node k and j: For example, in Fig.
2 the operations Collapseða; cÞ; Collapseðc; dÞ; Cutða; bÞ;
and Cutðc; eÞ have been performed. Collapse and cut
operations should be interpreted as decisions to allocate
nodes to the same or distinct processors, respectively.
An edge ekj is called worthless if and only if ckjXpk þP

laj ckl or ckjXpj þ
P

lak cjl : As shown in [14] for a
homogeneous case, each POT can be converted into a
POT with no worthless edges, called monotone tree, by
collapsing all its worthless edges. The monotone tree can
then be scheduled. In a monotone tree, we use the
following notations: Rk ¼ pk þ

P
jAV ckj; R ¼ maxRk;

and W ¼
P

kAV pk:

ARTICLE IN PRESS
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tion; (c) scheduling.
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Our algorithms are based on a two-stage approach
([4], Fig. 1) which the following phases are performed:
fragmentation, and the actual scheduling. This approach
allows us to reuse classical multi-processor scheduling
algorithms. In the fragmentation phase, the tree is
partitioned into connected fragments by cutting some
edges. The edges that are left are collapsed. Fragmenta-
tion produces a set of fragments that are ready to be
scheduled independently. The scheduling phase assigns
the fragments produced by the first phase. Let Mk

be cost of a fragment Fk: Then, Mk ¼
P

jAFk
½pj þP

leFk
cjl �: The weight of the heaviest fragment is

denoted by M: Clearly, based on the definition of the
monotone tree, R is a lower bound for M: C is the total
communication cost incurred in a fragmentation which
is twice the sum of the weights of the cut edges. So the
total load L is W þ C: In the algorithm presented,
superscript % is used to denote the quantities in the
optimal scheduling.
The problem that we solve is defined as follows. In a

uniform processor system, the processors m1;y;mp

have relative speeds of s1ps2p?psp: We assume that
these speeds have been normalized such that s1 ¼ 1 and
skX1; 2pkpp: POT scheduling on a uniform proces-
sor system is to find a schedule with minimum response
time of T ¼ max1pkpp

Lk

sk
: Obviously, POT scheduling

on uniform processors is also NP-hard. It is easily
shown that we can collapse the worthless edges in the
uniform processor case as well.

Theorem 2.1. Given a uniform processor system and a

POT P with worthless edge ekj: There exists an optimal

schedule of P for these processors in which k and j nodes

are assigned to the same processor.

3. Two uniform processor scheduling

We use the same two-stage approach. For scheduling,
we apply LPT algorithm as has been used for the
identical (homogeneous) case. LPT algorithm for the
uniform processor system [12] assigns tasks to proces-
sors in the decreasing order of their processing times. A
task is taken from this list and is assigned to a processor
whose finishing time is the earliest. We first find a
relationship between fragmentation phase and the LPT
schedule. Then, we extend previous algorithms of the
identical case.

3.1. Analysis of two-stage approach

As mentioned before, the fragmentation is done using
collapse and cut operations. Clearly, heavy fragments
increase load of processors and light fragments increase

the communication cost of the edges cut. Therefore, a
trade-off should be found for these effects.

Lemma 3.1. Consider a fragmentation with Mpk1L
%
max

and Lpk2L
% (k1 and k2 are real values X1). Scheduling

the produced fragments by LPT on two uniform pro-

cessors yields a schedule with T=T%pmaxð k1; 1:5k2Þ:

Proof. Let ml denote the processor that finishes last,
and Mk the lightest fragment assigned to ml : Since LPT
is used,Mk must be the last fragment assigned to ml :We
can remove all fragments which are lighter than Mk

from the produced schedule without any change in T :
Since T% is fixed, there is no change in the performance
ratio. Clearly, L0; the total load of the new set of
fragments, is less than or equal to L; and the weight of
the largest fragment M remains unchanged. For
different values of k; the following cases occur:
1. If kX2; from the definition of LPT, and scheduling

Mk; we have

81pjp2 : Tp
L0

j þ Mk

sj

) T
X2
j¼1

sj

 !

p
X2
j¼1

L0
j þ 2Mk;

in which L0
j is the load of mj; when Mk is scheduled.

Since
P2

j¼1 L0
j ¼ L0 � Mk and L0pL0pk2L

%; we have,

Tpk2L
%=
P2

j¼1 sj þ Mk=
P2

j¼1 sj :

Because L%=
P2

j¼1 sjpT%; we get Tpk2T
% þ

Mk

L% T%: And thus Tpk2T
% þ k2Mk

L0 T%: Since Mk is
the lightest task in the schedule, we have L0

XkMk:
Therefore, Tpk2T

% þ k2
k

T%: Thus, Tp1:5k2T%

pmaxð k1; 1:5k2ÞT%:
2. If k ¼ 1; Mk will be assigned to processor with

maximum speed. Therefore, TpMk

s2
: From assumption

of lemma, we conclude that Tpk1L
%
max=s2p

k1T
%pmaxð k1; 1:5k2ÞT%: &

Algorithms are thus needed for fragmentation of the
POT with minimum values of k1 and k2:

3.2. Modification of previous algorithms

We modify LocalCuts algorithm based on our
analysis for two uniform processor case. LocalCuts
repeatedly picks up a leaf and determines whether to cut
or collapse the edge from the leaf to its parent. It selects
a proper operation based on ratio of the leaf weight to
the weight of the edge to its parent. If the ratio is greater
than an input parameter a41; it will cut the edge, since
this operation does not considerably increase the weight
of the resulting fragments. If the ratio is less than a; the
leaf is collapsed to the parent node. This is because the
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weight of the parent node will not increase substantially.
In the algorithm, a mother node is defined as a node all
of whose children are leaves. In the algorithm that
follows, we choose a proper value for a based on
Theorem 3.1.

Algorithm 1 (LocalCuts Algorithm).

while there exist a mother node m with child j

if pj4acjm

then Cutð j;mÞ
else Collapseð j;mÞ

end while

Theorem 3.1. The worst-case performance ratio of

LocalCuts followed by LPT for scheduling on two

uniform processors is 3.

Proof. We have Cp2=ða� 1ÞW in LocalCuts algo-

rithm [4]. Therefore, L ¼ W þ Cpaþ1
a�1 W : Since

WpL%; then Lpaþ1
a�1 L%: We also have MoaR for

LocalCuts fragmentation [4]. Using Lemma 3.1, we

get T
T%pmaxða; 1:5 aþ1

a�1Þ:
Because 1:5 aþ1

a�1 is strictly decreasing in a and a is itself
strictly increasing in a; minimizing the right-hand side of
the above inequality gives us a ¼ 1:5 aþ1

a�1; which leads to

a ¼ 3: Thus, the worst-case performance ratio of the
algorithm is also equal to 3. &

We can show that this performance ratio is tight with
scheduling a POT similar to the example in [4] on two
processors with equal speeds.
The second algorithm that we modify is Bounded-

Cuts. If R is small compared to M%; LocalCuts
may cut expensive edges needlessly (maximum weight
of fragments produced by LocalCuts is bounded by
aR). This was the reason Chekuri, et al., modified
LocalCuts using a uniform bound B at each mother
node. The new algorithm, BoundedCuts, fragments
POT based on three parameters a; b; and B that satisfy
bXa41 and L%pBpð1þ eÞL%e41: This algorithm
cuts off light edges in a manner similar to LocalCuts.
But it collapses edges based on aB bound. The reader is
referred to [3] on how the value of B is chosen.

Algorithm 2 (BoundedCuts Algorithm).

while there exist a mother node m

Partition children of m into sets N1;N2 such that
child jAN1 iff

pj

cmj
Xb

Cutðm; jÞ for all jAN1

then Collapseðm; jÞ for all jAN2

else Cutðm; jÞ for all jAN2

end while

We now extend BoundedCuts algorithm choosing
the proper value for a and b:

Theorem 3.2. The worst-case performance ratio of

BoundedCuts followed by LPT algorithm for scheduling

on two uniform processors 2:35ð1þ eÞ:

Proof. From [4] we know, Cp 2
b�1W þ b�a

a�1 C% for

BoundedCuts algorithm. Since L ¼ W þ C; we have,

Lpmaxðbþ1b�1;
b�a
a�1ÞL%:

From [4], we know that Mpð1þ eÞaL%
max: Using

Lemma 3.1, we get, T
T%pmaxðð1þ eÞa; 1:5 bþ1

b�1; 1:5
b�a
a�1Þ:

Because 1:5 bþ1
b�1 is strictly decreasing in b; 1:5 b�a

a�1 is

strictly increasing in b and decreasing in a; and ð1þ eÞa
is strictly increasing in a; in order to minimize the right-
hand side of the above inequality, the values of these
functions must be equal. We thus have a ¼ 2:35
and b ¼ 4:51: Therefore, the performance ratio is
ð1þ eÞ2:35: &

Similar to [4], we can prove the performance ratio of the
algorithm is tight.

4. P-uniform processor scheduling

In this section, we first extend LocalCuts heuristic
followed by LPT algorithm for a frequent case of the
problem. We then prove that the combination of
LocalCuts followed by any scheduling algorithm with
a constant bound on its performance ratio (i.e., LPT or
Multifit [9]), provides a performance ratio with a
constant bound.

4.1. The frequent case

If W is distributed approximately uniformly
among nodes of the POT, maximum degree is consider-
ably less than the number of nodes n; and also pon; we
can prove that LocalCuts followed by LPT has the
worst-case performance ratio in the interval of
½3?3þ

ffiffiffiffi
17

p

2
Þ: These conditions often occur in scheduling

parallel database queries. In such cases, POT is usually a
binary or at most 3-ary tree [13] and the costs of pipe-
lined operations do not differ very much. This is because
the heavy operators are usually partitioned among some
processors (partitioned parallelism). Many of the
parallel database applications such as data mining
systems often process sophisticated queries whose POTs
have high number of nodes. These conditions on a POT
can be depicted mathematically as WX2ðp � 1ÞR:

Lemma 4.1. Assume a uniform processor system with p

processor and a POT P in which L%
X2ðp � 1ÞR: If a

fragmentation algorithm fragments P such that Mpk1R
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and Lpk2L
%; applying LPT on the produced fragments

gives a performance ratio of maxð k1; ð2� 1
p
Þk2Þ:

Proof. Similar to proof of Lemma 3.1, we first eliminate
all fragments lighter than Mk from the schedule
produced by LPT. As explained before, this does not
change the performance ratio of the schedule and M;
and also may decrease the total load L0: Based on the
definition of LPT in time of scheduling Mk; we have,

81pjpp : Tp
L0

jþMk

sj
:

L0
j is the load of processor mj when Mk is scheduled.
Similar to case 1 in proof of Lemma 3.1, and summing
up the above p inequalities, we conclude that

Tp
L0Pp
j¼1 sj

þ ðp � 1ÞMkPp
j¼1 sj

:

Based on the values of k; we have the following cases:
1. If kXp; similar to proof of Lemma 3.1, it can be

proved that Tpk2T
% þ ðp�1Þk2

k
T%: Since kXp; we have

Tpk2T
% þ ðp�1Þk2

p
T%: Then, Tpk2ð2� 1

p
ÞT%:

2. If kop; we have L0 ¼
Pk

l¼1 Mlp
Pp�1

l¼1 Ml : Since
M is the heaviest fragment, we have L0pðp � 1ÞM:

Thus, Tpðp�1ÞMPp

j¼1 sj

þ ðp�1ÞMkPp

j¼1 sj

: And because MkpM; we

conclude that Tp2ðp � 1ÞM=
Pp

j¼1 sj: From the as-

sumption of lemma, we have Tp2ðp � 1Þk1R=
Pp

j¼1 sj :

From L%
X2ðp � 1ÞR; we conclude that Tp k1L

%Pp

j¼1 sj

;

which leads to Tpk1T
%:

Therefore, for the general case we have,
Tpmaxð k1; ð2� 1

p
Þk2ÞT%: &

Now we can prove the following theorem regarding
the performance ratio of LocalCuts followed by LPT.

Theorem 4.1. The worst-case performance ratio of

LocalCuts followed by LPT for scheduling the POT
P; in which WX2ðp � 1ÞR; on a uniform processor

system lies in the interval of ½3?3þ
ffiffiffiffi
17

p

2
Þ; depending on the

number of processors.

Proof. Because of WpL%; we can use Lemma 4.1.
Similar to the proof of Theorem 3.1, we can prove that

T
T%p1

2
ð3� 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 1

p2
� 10

p

q
Þ; by selecting a ¼ 1

2
ð3� 1

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

17þ 1
p2
� 10

p

q
Þ: This performance ratio always lies in the

interval ½3?3þ
ffiffiffiffi
17

p

2
Þ: &

We can calculate the value of W and R in linear time
to test conditions of the input POT and apply the above
algorithm. Similar to the previous case, we can show
that this performance ratio is tight.

4.2. The general case

To solve the problem in the general case, a mapping
between the optimal and an arbitrary schedule is used.

Lemma 4.2. Suppose that there exists a mapping function

f from fragments produced by a fragmentation p of the

POT P to fragments of the optimal schedule, such that it

satisfies the following conditions:
1. f is total on its domain, and

2. for all Fk ð kX1Þ; such that f ðFkÞ ¼ F%
j ð jX1Þ; we

have

P
Mk

M%
j

pr ðr40Þ:
Then, scheduling the fragments of p using an uniform

processor scheduling algorithm, As; with the worst-case

performance ratio of e has performance ratio less than or

equal to re:

Proof. First, we make a schedule S1 from the optimal
schedule p: Each Fk fragment of p is assigned to the
processor that f ðFkÞ has been assigned to in the optimal
schedule. Because of totality of f ; we can schedule all
fragments of p in this manner. From our assumption, if
T1 is the response time of S1; we have

T1
T%pr: Clearly,

if T%
1 is the response time of the optimal schedule of

fragments produced by p; we have T%
1 pT1: Therefore,

scheduling these fragments by As yields a response time
of TpeT%

1 peT1: Then T
T%pre: &

So an algorithm is needed for fragmentation such that
we can define a function with the above condition with
constant and minimum value of r: The following
theorem proves that LocalCuts heuristics satisfy the
above conditions and provides a constant value for r:
We first need the following definition.

Definition 4.1. The main node of a fragment F is a node
whose parent does not belong to F : The main node of F

is denoted by mðFÞ:

In other words, the main node of a fragment is the
highest level node in that fragment. Clearly, every
fragment has one and only one main node.

Theorem 4.2. The worst-case performance ratio of Local-
Cuts followed by the uniform processor scheduling algo-

rithm that has the worst-case performance ratio of e is 8e:

Proof. We define relation f from fragments of Local-
Cuts to those of optimal solution such that f ðFkÞ ¼
F%

j ; if and only if mðFkÞ belongs to Fj: Clearly, f is a
total function on its domain because each fragment of
LocalCuts has one and only one main node and each
node of the POT belongs to one and only one fragment
in its optimal solution.

The value of r ¼
P

Mk

M%
j

; such that 8k f ðFkÞ ¼ %F%
j ;

is maximized when
P

Mk is maximized and M%
j is
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minimized. Assume that f maps n fragments F1;y;Fn

to one fragment F%
j : Because of the definition of f ; F%

j

must have at least n nodes. F1;y;Fn must be connected
because they are mapped into a fragment. M%

j is
minimized, if F%

j cuts all incident edges of the main
nodes of F1;y;Fn; except those edges that connect the
main nodes to each other (see Fig. 2). This is because the
POT is monotone and for every edge ekj we have,
ckjoRk � ckj : M%

j is also minimized if F%
J collapses all

edges which connect mðF1Þ;y; mðFnÞ to each other as is
shown in the figure. We therefore have,

Pn
k¼1 Mk ¼Pn

k¼1 ½mk þ
Pq

j¼1 pj þ
Pu

l¼1 cl �; in which mk is the
weight of mðFkÞ; pj is the weight of the child node j of
mðFkÞ that belongs to Fk; and cl is the weight of the
connecting edge between fragments incident mðFkÞ: For
each boundary node j of Fk; we assume that mj and pj

are the sum of node weights plus the weights of all edges
incident to j that are not in Fk:
Because F1;y;Fn form a subtree, and each connect-

ing edge between Fk and Fj is considered for computing

the cost of both Fk and Fj ; we have,
Pn

k¼1 Mk ¼Pn
k¼1 ½mk þ

Pq
j¼1 pj � þ 2

Pn�1
l¼1 cl :

Since connecting edges are cut by LocalCuts, we have

Xn

k¼1
Mko

Xn

k¼1
mk þ

Xq

j¼1
pj

" #
þ 2
a

Xn

k¼2
Mk:

Let a42 so

Xn

k¼1
Mko

a
a� 2

Xn

k¼1
mk þ

Xq

j¼1
pj

" #
:

For M%
j we have, M%

j ¼
Pn

k¼1 ½mk þ
Pq

j¼1 cj�; in
which cj is the weight of the cut edge j incident to
mðFkÞ: Note that j cannot be a connecting edge between
the main nodes. Since these edges are collapsed by
LocalCuts, we have M%

j X
Pn

k¼1 ½mk þ 1
a

Pq
j¼1 pj�:

To compute the ratio, we havePn
k¼1 Mk

M%
j

o

Pn
k¼1 ½mk þ

Pq
j¼1 pj�Pn

k¼1 ½mk þ 1
a

Pq
j¼1 pj�

a
a� 2
	 


o
a2

a� 2:

The above ratio is minimized when a ¼ 4; and the
minimum value of r is 8. This completes the proof. &

For the scheduling phase, Multifit algorithm can be
used, since its worst-case performance ratio is 1.3 [9].

Corollary 4.1. The worst-case performance ratio of

LocalCuts followed by Multifit algorithm for sche-

duling on a uniform processor system is 10.4.

We can also use the PTAS of Hochbaum and
Shmoys [15].

Corollary 4.2. The worst-case performance ratio of

LocalCuts followed by the PTAS of the uniform

processors scheduling of Hochbaum and Shmoys is

8ð1þ eÞ:

The first algorithm is more practical compared to the
second one. Because Multifit takes Oðn log nÞ; PTAS
has a high running time of Oðn

10
2
þ3Þ:

5. Experimental results

Experimental simulation has been used to analyze the
average case performance ratios of our proposed
algorithms. We basically used the same model as in
[13] with some modifications.
The trees that are generated randomly for our

simulation are specified by four parameters: Shape,
Size, EdgeRange, and NodeRange. Shape is the max-
imum number of children of a node in the tree. Two
main classes of tree shapes are called narrow and wide.
Narrow trees are binary trees, but wide trees can have
any number of children for a node. Narrow trees are
commonly encountered in practice. EdgeRange and
NodeRange are ranges from which the weights for edges
and nodes could be chosen. Size is the number of nodes
in a tree. From the trees randomly generated, we only
selected those that are monotone.
Each processor system is specified by two parameters:

SpeedRange and SpeedDistribution. SpeedRange is
the difference between the slowest and the fastest pro-
cessors. All other speeds are chosen in this range.
SpeedDistribution is the distribution of speeds of
processors.
We chose 30 for Size parameter and ½1y100� for both

EdgeRange and NodeRange. Other values did not yield
new results. Reported performance ratios are the
average values for 2500 monotone trees generated with
these parameters. We also chose a small value (3) for
SpeedRange and uniform distribution for SpeedDistri-
bution; these values are common in practice. We tested
our algorithms with different values of SpeedRange and
SpeedDistribution. This slightly changed the average
case performance ratios, but did not change the relative
order of the performance of the algorithms.
Computating the optimal schedule is very time

consuming. We therefore used the maximum values of
the two lower bounds of the optimal solutions for the
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Fig. 2. The mapping between LocalCuts and optimal fragmentation.
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optimal values. These two bounds are WP
s
and R

max s
as

described in the paper.
Figs. 3 and 5 depict the performance ratios of the

BoundedCut algorithm for narrow and wide trees,
respectively, and for a number of processors from 2 to
30. Similar plots for LocalCuts algorithms are shown
in Figs. 4 and 6. The experimental result for this
algorithm has been computed for three different values
of a ð3; 1

2
ð3� 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ 1

p2
� 10

p

q
Þ; and 4) which are also

shown. For the first two values of a; we have used LPT
scheduling algorithm, and we have used Multifit for
the last.
The analysis of the results is as follows. We know that

the first lower bound mentioned before is close to the
optimal response time when the number of nodes is
considerably greater than

P
s: This can also happen

when the number of nodes is greater than the number of
processors for a specified SpeedRange. This case is
shown in the left regions of the experimental plots. The
other lower bound is also close to the optimal response
time when the number of nodes is less than or
approximately equal to the number of processors for a
specified SpeedRange. The right regions of the plots
demonstrate this case. The middle regions of the plots
show that the mentioned lower bounds are not good
estimates for the optimal solution. Therefore, our plots
show some increase in the performance ratios in the
middle region. We can conclude that, for wide trees, R

max s

is a better estimate for the optimal response time than
that for the narrow trees. This is because R is closer to
M% in wide trees. This results in the fact that the middle
regions of the plots for the wide trees are narrower than
those for the narrow trees.
From the first two plots, we can conclude that the

average performance ratios of the BoundedCuts
algorithm are very close to the optimal values and are
in many cases smaller than other three LocalCuts
algorithms. It is also observed that this algorithm’s

performance in the right region is much better than
those of other algorithms. The reason is that the
algorithm generates lighter-weight fragments in this
case compared to others.
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Fig. 6. Average performance ratios of LocalCuts for wide trees.
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We have also tested BoundedCuts for some other
values of e in the interval of ½0:1y0:01�; but no
considerable changes in the performance ratios were
observed.
From these experimentations, we conjecture that the

worst-case performance ratio of BoundedCuts is about
3 for the general case.
For LocalCuts, we formally proved that its perfor-

mance ratio is at most e a2
ða�2Þ; eX1: We experimentally

observe that the actual average case performance ratios
of all versions of LocalCuts are close to the optimal
values.
Other observation is that for the small values of a;

LocalCuts generates lighter-weight fragments which
results in smaller performance ratios in the right region
and larger performance ratios in the left region. This
helps us select the appropriate values for a in different
regions. The borderlines between the regions is deter-
mined by experimentation. We believe that this will
improve the algorithm even further.

6. Conclusions

In this paper, we studied the heterogeneity of
resources in parallel query scheduling. This is an
important concern and has not been considered in
previous similar works. We introduced the POT
scheduling on the uniform processor system and
proposed approximation algorithms for some special
cases of the problem as well as for the general case. We
showed that our algorithms have constant bounds on
their worst-case performance ratio. The performance
ratios of these algorithms, even for the general case, are
shown by experimentation to be near optimal on the
average.
This problem can be extended in many ways any other

properties of the parallel database systems can be taken
into account for these problems. On heterogeneous
network of workstations, for example, heterogeneity of
other resources and consideration of the propagation
delay time between workstations are important. Some
preliminary results can be found in [19]. Further work
on this is underway.
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